全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Current-Controlled CFTA Based Fractional Order Quadrature Oscillators

DOI: 10.4236/cs.2016.713345, PP. 4201-4212

Keywords: Fractional Order, Quadrature Oscillator, Current-Controlled Current Follower Transconductance Amplifier

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a study of fractional order quadrature oscillators based on current-controlled current follower transconductance amplifiers (CCCFTA). The design realisation and performance of the fractional order quadrature oscillators have been presented. The quadrature oscillators are constructed using three fractional capacitors of orders α = 0.5. The fractional capacitor is not available on the market or in the PSPICE program. Fortunately, the fractional capacitor can be realised by using the approximate method for the RC ladder network approximation. The oscillation frequency and oscillation condition can be electronically/orthogonally controlled via input bias currents. Due to high-output impedances, the proposed circuit enables easy cascading in current-mode (CM). The PSPICE simulation results are depicted, and the given results agree well with the anticipated theoretical outcomes.

References

[1]  Bunde, A. and Havlin, S. (1995) Fractals in Science. Springer, Berlin.
[2]  Said, L.A., Madian, A.H., Radwan, A.G. and Soliman, A.M. (2014) Fractional Order Oscillator with Independent Control of Phase and Frequency. 2nd International Conference on Electronic Design (ICED), Malisia, 19-21 August 2014, 224-229.
[3]  Oldham, K.B. and Spanier, J. (2006) The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Books on Mathematics, New York.
[4]  Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006) Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam.
[5]  Ortigueira, M.D. (2006) A Coherent Approach to Non Integer Order Derivatives. Signal Processing, 86, 2505-2515.
http://dx.doi.org/10.1016/j.sigpro.2006.02.002
[6]  Nemat-Nasser, S. (2002) Micromechanics of Actuation of Ionic Polymermetal Composites. Journal of Applied Physics, 92, 2899-2915.
http://dx.doi.org/10.1063/1.1495888
[7]  Nemat-Nasser, S. and Wu, Y. (2003) Comparative Experimental Study of Ionic Polymer-Metal Composites with Different Backbone Ionomers and in Various Cation Forms. Journal of Applied Physics, 93, 5255-5267.
http://dx.doi.org/10.1063/1.1563300
[8]  Axtell, M. and Bise, E.M. (1990) Fractional Calculus Applications in Control Systems. Proceedings of the IEEE National Aerospace and Electronics Conference, New York, 21-25 May 1990, 563-566.
http://dx.doi.org/10.1109/NAECON.1990.112826
[9]  Vinagre, B.M., Podlubny, I., Hernandez, A. and Feliu, V. (2000) Some Approximations of Fractional Order Operators Used in Control Theory and Applications. Fractional Calculus and Applied Analysis, 3, 231-248.
[10]  Dorcak, L. (1994) Numerical Models for the Simulation of the Fractional Order Control Systems. The Academy of Sciences, Institute of Experimental Physic, Slovakia.
[11]  Tseng, C.C. (2007) Design of FIR and IIR Fractional Order Simpson Digital Integrators. Signal Processing, 87, 1045-1057.
http://dx.doi.org/10.1016/j.sigpro.2006.09.006
[12]  Comedang, T. and Intani, P. (2014) A±0.2 V, 0.12 μW CCTA Using VTMOS and an Application Fractional-Order Universal Filter. Journal of Circuits, Systems and Computers, 23, Article ID: 1450126.
http://dx.doi.org/10.1142/S0218126614501266
[13]  Radwan, A.G., Elwakil, A.S. and Soliman, A.M. (2008) Fractional-Order Sinusoidal Oscillators: Design Procedure and Practical Examples. IEEE Transactions on Circuits and Systems I: Regular Papers, 55, 2051-2063.
http://dx.doi.org/10.1109/TCSI.2008.918196
[14]  Radwan, A.G. and Salama, K.N. (2011) Passive and Active Elements Using Fractional Lβ Cα Circuit. IEEE Transactions on Circuits and Systems I: Regular Papers, 58, 2388-2397.
http://dx.doi.org/10.1109/TCSI.2011.2142690
[15]  Carlson, G.E. and Halijak, C.A. (1964) Approximation of Fractional Capacitors (1/s)1/n by a Regular Newton Process. IEEE Transactions on Circuit Theory, 11, 210-213.
http://dx.doi.org/10.1109/TCT.1964.1082270
[16]  Nakagava, M. and Sorimachi, K. (1992) Basic Characteristics of a Fractance Device. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E75-A, 1814-1819.
[17]  Sugi, M., Hirano, Y., Miura, Y.F. and Saito, K. (1999) Simulation of Fractal Immittance by Analog Circuits: An Approach to the Optimized Circuits. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E82-A, 1627-1635.
[18]  Oldham, K. and Spanier, J. (1974) The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York.
[19]  Miller, K. and Ross, B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, Hoboken.
[20]  Samko, S., Kilbas, A. and Marichev, O. (1987) Fractional Integrals and Derivatives: Theory and Application. Gordon and Breach, New York.
[21]  Miller, K.S. (1995) Derivatives of Non-Integer Order. Mathematics Magazine, 68, 183-192.
http://dx.doi.org/10.2307/2691413
[22]  Toumazou, C., Lidgey, F.J. and Haigh, D. (1990) Analog IC Design: The Current-Mode Approach. Peter Peregrinus Press, London.
[23]  Ozcan, S., Toker, A., Acar, C., Kuntman, H. and Cicekoglu, O. (2000) Single Resistance-Controlled Sinusoidal Oscillators Employing Current Differencing Buffered Amplifier. Microelectronics Journal, 31, 169-174.
http://dx.doi.org/10.1016/S0026-2692(99)00113-5
[24]  Mijat, N., Jurisic, D. and Samson Moschytz, G. (2013) A Novel Third-Order Leap-Frog Active Filter. Automatika, 54, 217-230.
http://dx.doi.org/10.7305/automatika.54-2.308
[25]  Horng, J.W. (2005) Current Conveyors Based All Pass Filters and Quadrature Oscillators Employing Grounded Capacitors and Resistors. Computers and Electrical Engineering, 31, 81-92.
http://dx.doi.org/10.1016/j.compeleceng.2004.11.006
[26]  Minaei, S. and Yuce, E. (2010) Novel Voltage-Mode All-Pass Filter Based on Using DVCCs. Circuits, Systems, and Signal Processing, 29, 391-402.
http://dx.doi.org/10.1007/s00034-010-9150-3
[27]  Ibrahim, M.A., Minaei, S. and Yuce, E. (2012) All-Pass Sections with Rich Cascadability and IC Realization Suitability. International Journal of Circuit Theory and Applications, 40, 461-472.
http://dx.doi.org/10.1002/cta.738
[28]  Ibrahim, M.A., Minaei, S. and Yuce, E. (2011) All-Pass Sections with High Gain Opportunity. Radioengineering, 20, 3-9.
[29]  Jin, J., Wang, C. and Sun, J. (2015) Novel Third-Order Quadrature Oscillators with Grounded Capacitors. Automatika, 56, 207-216.
http://dx.doi.org/10.7305/automatika.2015.07.669
[30]  Herencsar, N., Koton, J. and Vrba, K. (2009) Electronically Tunable Phase Shifter Employing Current Controlled Current Follower Transconductance Amplifiers (CCCFTAs). 32nd International Conference on Telecommunications and Signal Processing, Hungary, 26-27 August 2009, 54-57.
[31]  Couch, L.W. (2001) Digital and Analog Communication Systems. Prentice Hall Inc., Upper Saddle River.
[32]  Tomasi, W. (1998) Electronic Communications System. Prentice-Hall Inc., Upper Saddle River.
[33]  Yucel, F. and Yuce, E. (2014) CCII Based More Tunable Voltage-Mode All-Pass Filters and Their Quadrature Oscillator Applications. AEU—International Journal of Electronics and Communications, 68, 1-9.
http://dx.doi.org/10.1016/j.aeue.2013.06.012
[34]  Yucel, F. and Yuce, E. (2015) A New Single CCII-Based Voltage-Mode First-Order All-Pass Filter and Its Quadrature Oscillator Application, Scientia Iranica Transaction D: Computer Science & Engineering, Electrical, 22, 1068-1076.
[35]  Freeborn, T. (2010) Design and Implementation of Fractional Step Filters. MSc Thesis, University of Calgary, Calgary.
[36]  Haba, T., Loum, G., Zoueu, J. and Ablart, G. (2008) Use of a Component with Fractional Impedance in the Realization of an Analogical Regulator of Order 1/2. Journal of Applied Sciences, 8, 59-67.
http://dx.doi.org/10.3923/jas.2008.59.67
[37]  Haba, T., Ablart, G. and Camps, T. (1997) The Frequency Response of a Fractal Photolithographic Structure. IEEE Transactions on Dielectrics and Electrical Insulation, 4, 321-326.
http://dx.doi.org/10.1109/94.598289
[38]  Tsukutani, T., Edasaki, S., Sumi, Y. and Fukui, Y. (2006) Current-Mode Universal Biquad Filter Using OTAs and DO-CCII. Frequenz, 60, 237-240.
http://dx.doi.org/10.1515/FREQ.2006.60.11-12.237

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133