In this
paper, we establish the dual Orlicz-Minkowski inequality and the dual Orlicz-Brunn-Minkowski
inequality for dual Orlicz mixed quermassintegrals.
References
[1]
Chen, F., Zhou, J. and Yang, C. (2011) On the Reverse Orlicz Busemann-Petty Centroid Inequality. Advances in Applied Mathematics, 47, 820-828. http://dx.doi.org/10.1016/j.aam.2011.04.002
[2]
Gardner, R.J., Hu, D. and Weil, W. (2014) The Orlicz-Brunn-Minkowski Theory: A General Framework, Additions, and Inequalities. Journal of Differential Geometry, 97, 427-476.
[3]
Gardner, R.J., Hug, D., Weil, W. and Ye, D. (2015) The Dual Orlicz-Brunn-Minkowski Theory. Journal of Mathematical Analysis and Applications, 430, 810-829. http://dx.doi.org/10.1016/j.jmaa.2015.05.016
[4]
Haberl, C., Lutwak, E., Yang, D. and Zhang, G. (2010) The Even Orlicz Minkowski Problem. Advances in Mathematics, 224, 2485-2510. http://dx.doi.org/10.1016/j.aim.2010.02.006
[5]
Huang, Q. and He, B. (2012) On the Orlicz Minkowski Problem for Polytopes. Discrete & Computational Geometry, 48, 281-297. http://dx.doi.org/10.1007/s00454-012-9434-4
[6]
Li, A. and Leng, G. (2011) A New Proof of the Orlicz Busemann-Petty Centroid Inequality. Proceedings of the American Mathematical Society, 139, 1473-1481. http://dx.doi.org/10.1090/S0002-9939-2010-10651-2
[7]
Ludwig, M. (2010) General Affine Surface Areas. Advances in Mathematics, 224, 2346-2360. http://dx.doi.org/10.1016/j.aim.2010.02.004
[8]
Lutwak, E., Yang, D. and Zhang, G. (2010) Orlicz Projection Bodies. Advances in Mathematics, 223, 220-242. http://dx.doi.org/10.1016/j.aim.2009.08.002
[9]
Lutwak, E., Yang, D. and Zhang, G. (2010) Orlicz Centroid Bodies. Journal of Differential Geometry, 84, 365-387.
[10]
Xi, D., Jin, H. and Leng, G. (2014) The Orlicz-Brunn-Minkowski Inequality. Advances in Mathematics, 260, 350-374. http://dx.doi.org/10.1016/j.aim.2014.02.036
[11]
Xiong, G. and Zou, D. (2014) Orlicz Mixed Quermassintegrals. Science China Mathematics, 57, 2549-2562. http://dx.doi.org/10.1007/s11425-014-4812-4
[12]
Zhu, B., Zhou, J. and Xu, W. (2014) Dual Orlicz-Brunn-Minkowski Theory. Advances in Mathematics, 264, 700-725. http://dx.doi.org/10.1016/j.aim.2014.07.019
[13]
Zhu, G. (2012) The Orlicz Centroid Inequality for Star Bodies. Advances in Applied Mathematics, 48, 432-445. http://dx.doi.org/10.1016/j.aam.2011.11.001
[14]
Zou, D. and Xiong, G. (2014) Orlicz-John Ellipsoids. Advances in Mathematics, 265, 132-168. http://dx.doi.org/10.1016/j.aim.2014.07.034
[15]
Lutwak, E. (1996) The Brunn-Minkowski-Firey Theory II: Affine and Geominimal Surface Areas. Advances in Mathematics, 118, 244-294. http://dx.doi.org/10.1006/aima.1996.0022
[16]
Lutwak, E. (1975) Dual Mixed Volumes. Pacific Journal of Mathematics, 58, 531-538. http://dx.doi.org/10.2140/pjm.1975.58.531
[17]
Hardy, G.H., Littlewood, J.E. and PO’lya, G. (1988) Inequalities. 2nd Edition, Cambridge University Press, Cambridge.