全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Model Based Pressure Control of a Push Belt Continuously Variable Transmission

DOI: 10.4236/mme.2016.64011, PP. 99-112

Keywords: CVT, Pressure Control, Optimal Operating Line, Metal Push-Belt

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Continuously Variable Transmission (CVT) is a type of transmissions that provides a continuous range of speed ratios, thus it allows increasing the overall powertrain efficiency by running the engine at the optimal operating points. This paper investigates implementing a model based hydraulic pressure controller to achieve the desired CVT gear ratio. A map of desired gear ratios was estimated using the Optimal Operating Line (OOL) strategy, which minimizes the engine fuel consumption according to a defined cost function and a set of systems constraints. The controller was implemented in a complete vehicle model that includes driver, powertrain and road load models. The model was subjected to two different driving cycles and the results demonstrate the effectiveness of the control strategy and the pressure controller in keeping the engine at the most efficient operating regions.

References

[1]  [1] Srivastava, N. and Haque, I. (2009) A Review on Belt and Chain Continuously Variable Transmissions (CVT): Dynamics and Control. Mechanism and Machine Theory, 44, 19-41.
http://dx.doi.org/10.1016/j.mechmachtheory.2008.06.007
[2]  National Research Council (2015) Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles. National Academies Press, Washington DC.
[3]  Bdran, S., Saifullah, S. and Shuyuan, M. (2012) An Overview on Control Concepts of Push-Belt CVT. International Journal of Engineering and Technology, 4, 392-395.
http://dx.doi.org/10.7763/ijet.2012.v4.392
[4]  Pesgens, M., Vroemen, B., Stouten, B., Veldpaus, F. and Steinbuch, M. (2006) Control of a Hydraulically Actuated Continuously Variable Transmission. Vehicle System Dynamics, 44, 387-406.
http://dx.doi.org/10.1080/00423110500244088
[5]  Kim, W., & Vachtsevanos, G. (2000). Fuzzy logic ratio control for a CVT hydraulic module. In Intelligent Control, 2000. Proceedings of the 2000 IEEE International Symposium on (pp. 151-156). IEEE.
[6]  Bonsen, B., Klaassen, T.W.G.L., Pulles, R.J., Simons, S.W.H., Steinbuch, M. and Veenhuizen, P.A. (2005) Performance Optimisation of the Push-Belt CVT by Variator Slip Control. International Journal of Vehicle Design, 39, 232-256.
http://dx.doi.org/10.1504/IJVD.2005.008473
[7]  Wang, K., Zhang, X. and Zhong, Y. (2011) Research on the Ratio Control of Metal Belt CVT. 2011 International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), IEEE, 7, 3485-3488.
[8]  Ryu, W., Nam, J., Lee, Y. and Kim, H. (2005) Model Based Control for a Pressure Control Type CVT. International Journal of Vehicle Design (IJVD), 39, 175-188.
http://dx.doi.org/10.1504/ijvd.2005.008470
[9]  Pfeiffer, F., Ed. (2008) Mechanical System Dynamics. Springer, Berlin.
[10]  Ide, T., Udagawa, A. and Kataoka, R. (1995) Simulation Approach to the Effect of the Ratio Changing Speed of a Metal V-Belt CVT on the Vehicle Response. Vehicle System Dynamics, 24, 377-388.
[11]  Bonsen, B., Klaassen, T.W.G.L., van de Meerakker, K.G.O., Steinbuch, M. and Veenhuizen, P.A. (2003) Analysis of Slip in a Continuously Variable Transmission. Dynamic Systems and Control, Volumes 1 and 2, 995-1000.
[12]  Alzuwayer, B., Abdelhamid, M., Pisu, P., Giovenco, P. and Venhovens, P. (2014) Modeling and Simulation of a Series Hybrid CNG Vehicle. SAE International Journal of Alternative Powertrains, 3, 20-29.
http://dx.doi.org/10.4271/2014-01-1802
[13]  Hofman, T. and van Druten, R. (2004) Research Overview Design Specifications for Hybrid Vehicles. European ELE-DRIVE Transportation.
[14]  Bonsen, B. (2006) Efficiency Optimization of the Push-Belt CVT by Variator Slip Control. Dissertation Abstracts International 68.02.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133