A chemical non-equilibrium equation for binding of massless quarks to antiquarks, combined with the spatial correlations occurring in the condensation process, yields a density dependent form of the double-well potential in the electroweak theory. The Higgs boson acquires mass, valence quarks emerge and antiparticles become suppressed when the system relaxes and symmetry breaks down. The hitherto unknown dimensionless coupling parameter to the superconductor-like potential becomes a re-gulator of the quark-antiquark asymmetry. Only a small amount of quarks become “visible”—the valence quarks, which are 13% of the total sum of all quarks and antiquarks—suggesting that the quarks-antiquark pair components of the becoming quark-antiquark sea play the role of dark matter. When quark-masses are in-weighted, this number approaches the observed ratio between ordinary matter and the sum of ordinary and dark matter. The model also provides a chemical non-equilibrium explanation for the information loss in black holes, such as of baryon number.
References
[1]
Wilczek, F. (2012) Origins of Mass. Central European Journal of Physics, 10, 1021-1037. http://dx.doi.org/10.2478/s11534-012-0121-0
[2]
Sakharov, A. (1967) Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the Universe. JETP Letters, 5, 24-27.
[3]
Reichl, L.E. (1998) A Modern Course in Statistical Physics. 2nd Edition, John Wiley & Sons, New York.
[4]
Jacak, B.V. and Müller, B. (2012) The Exploration of Hot Nuclear Matter. Science, 337, 310-314. http://dx.doi.org/10.1126/science.1215901
[5]
Gross, D.J. and Wilczek, F. (1973) Ultraviolet Behavior of Non-Abelian Gauge Theories. Physical Review Letters, 30, 1343-1346. http://dx.doi.org/10.1103/PhysRevLett.30.1343
Gross, D.J., Pisarski, R.D. and Yaffe, L.G. (1981) QCD and Instantons at Finite Temperature. Reviews of Modern Physics, 53, 43-80. http://dx.doi.org/10.1103/RevModPhys.53.43
[8]
Matsson, L. and Meuldermans, R. (1977) Long Range Correlations in Forward Quark-(Anti-) Quark Scattering in QCD. Physics Letters B, 70, 309-312. http://dx.doi.org/10.1016/0370-2693(77)90665-7
[9]
Brezin, E., Itzykson, C. and Zinn-Justin, J. (1970) Relativistic Balmer Formula Including Recoil Effects. Physical Review D, 1, 2349-2355. http://dx.doi.org/10.1103/PhysRevD.1.2349
[10]
Lévy, M. and Sucher, J. (1970) Asymptotic Behavior of Scattering Amplitudes in the Relativistic Eikonal Approximation. Physical Review D, 2, 1716-1724. http://dx.doi.org/10.1103/PhysRevD.2.1716
[11]
Doi, M. and Edwards, S.F. (1986) The Theory of Polymer Dynamics. 3rd Edition, Clarendon Press, Oxford.
[12]
Debye, P. (1946) The Intrinsic Viscocity of Polymer Solutions. The Journal of Chemical Physics, 14, 636-639. http://dx.doi.org/10.1063/1.1724075
Jackiw, R. (1977) Quantum Meaning of Classical Field Theory. Reviews of Modern Physics, 49, 681-706. http://dx.doi.org/10.1103/RevModPhys.49.681
[15]
Combs, A.J. and Yip, S. (1983) Single-Kink Dynamics in a One-Dimensional Atomic Chain. A Nonlinear Atomistic Theory and Numerical Simulation. Physical Review B, 28, 6873-6885. http://dx.doi.org/10.1103/PhysRevB.28.6873
[16]
Huang, K. (1992) Quarks, Leptons & Gauge Fields. 2nd Edition, World Scientific, Singapore.
[17]
De Gennes, P.G. and Prost, J. (1993) The Physics of Liquid Crystals. 2nd Edition, Clarendon Press, Oxford.
[18]
Ade, P.A.R., Aghanim, N., Arnaud, M., et al. (2015) Planck 2015 Results. XIII. Cosmological Parameters. arXiv:1502.01589
[19]
Chalmers, M. (2015) Forsaken Pentaquark Particle Spotted at CERN. Nature, 523, 267-268. http://dx.doi.org/10.1038/nature.2015.17968
[20]
Cho, A. (2016) The Social Life of Quarks. Science, 351, 217-219. http://dx.doi.org/10.1126/science.351.6270.217
[21]
Kajita, T. (1999) Atmospheric Neutrino Results from Super-Kamiokande and Kamiokande —Evidence for Vμ Oscillations. Nuclear Physics B-Proceedings Supplements, 77, 123-132. http://dx.doi.org/10.1016/S0920-5632(99)00407-7
[22]
Ahmad, Q.R., McCauley, N., McDonald, A.B., McDonald, D.S., et al. (2001) Measurement of the Rate of Ve + d → p + p + e- Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory. Physical Review Letters, 87, Article ID: 071301. http://dx.doi.org/10.1103/PhysRevLett.87.071301
[23]
Nielsen, H.B. and Olesen, P. (1973) Vortex-Line Models for Dual Strings. Nuclear Physics B, 61, 45-61. http://dx.doi.org/10.1016/0550-3213(73)90350-7
[24]
Volovik, G.E. (2012) The Universe in a Helium Droplet. 3rd Edition, Oxford University Press, Oxford.
[25]
Plümer, M., Raha, S. and Weiner, R.M. (1984) Effects on Confinement on the Sound Velocity in a Quark-Gluon Plasma. Physics Letters B, 139, 198-202. http://dx.doi.org/10.1016/0370-2693(84)91244-9
[26]
Einstein, A. and Rosen, N. (1935) The Particle Problem in the General Theory of Relativity. Physical Review, 48, 73-77. http://dx.doi.org/10.1103/PhysRev.48.73
[27]
Abbot, B.P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102. http://dx.doi.org/10.1103/PhysRevLett.116.061102
[28]
Bower, G.C. (2016) The Screams of a Star Being Ripped Apart. Science, 351, 30-31. http://dx.doi.org/10.1126/science.aad5541
[29]
van Velzen, S., Anderson, G.E., Stone, N.C., et al. (2016) A Radio Jet from the Optical and X-Ray Bright Stellar Tidal Disruption Flare ASASSN-14li, Science, 351, 62-65. http://dx.doi.org/10.1126/science.aad1182
[30]
Dirac, P.A.M. (1930) A Theory of Electrons and Protons. Proceedings of the Royal Society of London A, 126, 360-365. http://dx.doi.org/10.1098/rspa.1930.0013