Motivated by a general theory of finite asymptotic expansions in the real domain for functions f of one real variable, a theory developed in a previous series of papers, we present a detailed survey on the classes of higher-order asymptotically-varying functions where “asymptotically” stands for one of the adverbs “regularly, smoothly, rapidly, exponentially”. For order 1 the theory of regularly-varying functions (with a minimum of regularity such as measurability) is well established and well developed whereas for higher orders involving differentiable functions we encounter different approaches in the literature not linked together, and the cases of rapid or exponential variation, even of order 1, are not systrematically treated. In this semi-expository paper we systematize much scattered matter concerning the pertinent theory of such classes of functions hopefully being of help to those who need these results for various applications. The present Part I contains the higher-order theory for regular, smooth and rapid variation.
References
[1]
Granata, A. (2011) Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part I: Two-Term Expansions of Differentiable Functions. Analysis Mathematica, 37, 245-287. http://dx.doi.org/10.1007/s10476-011-0402-7
[2]
Granata, A. (2015) The Factorizational Theory of Finite Asymptotic Expansions in the Real Domain: A Survey of the Main Results. Advances in Pure Mathematics, 5, 1-20. http://dx.doi.org/10.4236/apm.2015.51001
[3]
Granata, A. (2015) Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part II-A: The Factorizational Theory for Chebyshev Asymptotic Scales. Advances in Pure Mathematics, 5, 454-480. http://dx.doi.org/10.4236/apm.2015.58045
[4]
Granata, A. (2015) Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part II-B: Solutions of Differential Inequalities and Asymptotic Admissibility of Standard Derivatives. Advances in Pure Mathematics, 5, 481-502. http://dx.doi.org/10.4236/apm.2015.58046
[5]
Granata, A. (2015) Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part II-C: Constructive Algorithms for Canonical Factorizations and a Special Class of Asymptotic Scales. Advances in Pure Mathematics, 5, 503-526. http://dx.doi.org/10.4236/apm.2015.58047
[6]
Bourbaki, N. (1976) Fonctions d’une Variable Réelle-Théorie élémentaire. Hermann, Paris.
[7]
Balkema, A.A., Geluk, J.L. and de Haan, L. (1979) An Extension of Karamata’s Tauberian Theorem and Its Connection with Complementary Convex Functions. The Quarterly Journal of Mathematics, Oxford University Press, Series 2, 30, 385-416. http://dx.doi.org/10.1093/qmath/30.4.385
[8]
Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) Regular Variation. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511721434
[9]
Lantsman, M.H. (2001) Asymptotics of Linear Differential Equations. Springer Science+ Business Media, Dordrecht. http://dx.doi.org/10.1007/978-94-015-9797-5
[10]
Seneta, E. (1976) Regularly Varying Functions. Springer-Verlag, Berlin-Heidelberg-New York. http://dx.doi.org/10.1007/BFb0079658
[11]
Pólya, G. and Szëgo, G. (1972) Problems and Theorems in Analysis. Vol. I. Springer-Verlag, Berlin-Heidelberg-New York. http://dx.doi.org/10.1007/978-1-4757-1640-5
[12]
Granata, A. (2010) The Problem of Differentiating an Asymptotic Expansion in Real Powers. Part I: Unsatisfactory or Partial Results by Classical Approaches. Analysis Mathematica, 36, 85-112. http://dx.doi.org/10.1007/s10476-010-0201-6
[13]
Granata, A. (2015) The Role of Asymptotic Mean in the Geometric Theory of Asymptotic Expansions in the Real Domain. Advances in Pure Mathematics, 5, 100-119. http://dx.doi.org/10.4236/apm.2015.52013