全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Group Inverse of 2 × 2 Block Matrices over Minkowski Space M

DOI: 10.4236/alamt.2016.63009, PP. 75-87

Keywords: Block Matrix, Group Inverse, Minkowski Adjoint, Minkowski Space

Full-Text   Cite this paper   Add to My Lib

Abstract:

Necessary and sufficient conditions for the existence of the group inverse of the block matrix \"\" in Minkowski Space are studied, where \"\" are both square and \"\". The representation of this group inverse and some related additive results are also given.

References

[1]  Zhuang, W. (1987) Involutory Functions and Generalized Inverses of Matrices over an Arbitrary Skew Fields. Northeast Math, 1, 57-65.
[2]  Golub, G.H. and Greif, C. (2003) On Solving Blocked-Structured Indefinite Linear Systems. SIAM Journal on Scientific Computing, 24, 2076-2092.
[3]  Ipsen, I.C.F. (2001) A Note on Preconditioning Nonsymmetric Matrices. SIAM Journal on Scientific Computing, 23, 1050-1051.
[4]  Campbell, S.L. and Meyer, C.D. (2013) Generalized Inverses of Linear Transformations. Dover, New York.
[5]  Bu, C. (2002) On Group Inverses of Block Matrices over Skew Fields. Journal of Mathematics, 35, 49-52.
[6]  Bu, C., Zhao, J. and Zheng, J. (2008) Group inverse for a Class 2 × 2 Block Matrices over Skew Fields. Computers & Mathematics with Applications, 204, 45-49.
http://dx.doi.org/10.1016/j.amc.2008.05.145
[7]  Cao, C. (2001) Some Results of Group Inverses for Partitioned Matrices over Skew Fields. Heilongjiang Daxue Ziran Kexue Xuebao, 18, 5-7.
[8]  Cao, C. and Tang, X. (2006) Representations of the Group Inverse of Some 2 × 2 Block Matrices. International Mathematical Forum, 31, 1511-1517.
http://dx.doi.org/10.12988/imf.2006.06127
[9]  Chen, X. and Hartwig, R.E. (1996) The Group Inverse of a Triangular Matrix. Linear Algebra and Its Applications, 237/238, 97-108.
http://dx.doi.org/10.1016/0024-3795(95)00561-7
[10]  Catral, M., Olesky, D.D. and van den Driessche, P. (2008) Group Inverses of Matrices with Path Graphs. The Electronic Journal of Linear Algebra, 1, 219-233.
http://dx.doi.org/10.13001/1081-3810.1260
[11]  Cao, C. (2006) Representation of the Group Inverse of Some 2 × 2 Block Matrices. International Mathematical Forum, 31, 1511-1517.
[12]  Krishnaswamy, D. and Punithavalli, G. (2013) The Anti-Reflexive Solutions of the Matrix Equation A × B=C in Minkowski Space M. International Journal of Research and Reviews in Applied Sciences, 15, 2-9.
[13]  Krishnaswamy, D. and Punithavalli, G. (2013) The Re-nnd Definite Solutions of the Matrix Equation A × B=C in Minkowski Space M. International Journal of Fuzzy Mathematical Archive, 2, 70-77.
[14]  Krishnaswamy, D. and Punithavalli, G. Positive Semidefinite (and Definite) M-Symmetric Matrices Using Schur Complement in Minkowski Space M. (Preprint)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133