Dry Ionic Liquid (D-IL) never means some “water-free” ionic liquid but is a member of “Dry Matter (DM)”. DM is a collective name for powdery substances that are composed of micro droplets as an inner core phase and surrounding hydrophobic silica nano particles as the shell part. When the core part is water, it is called Dry Water (DW), which is the first member of DM, while D-IL is the newest one. Because of the much larger surface area of DM compared with that of the inner phase in bulk state, this novel substances are expected to show excellent performance for any mass transfer through the gas-liquid interface. In the present study, we investigated CO2 absorption by some D-ILs and a DM containing a polyamine in terms of the speed to the equilibrium and a mol-based absorption efficiency. Compared with the respective bulk systems, the D-IL and DM systems proved to be accelerated by ca.50 times without impairing the absorption efficiency.
References
[1]
Brunner, H., Shutte, D. and Schmitz, F.-T. (1964) German Patent DE1467023.
[2]
Pickering, S.U. (1907) Emulsions. Journal of the Chemical Society, 91, 2001-2021. http://dx.doi.org/10.1039/CT9079102001
[3]
Binks, B.P. and Murakami, R. (2006) Phase Inversion of Particle-Stabilized Materials from Foams to Dry Water. Nature Materials, 5, 865-869. http://dx.doi.org/10.1038/nmat1757
[4]
Wang, W., Bray, C.L., Adams, D.J. and Cooper, A.I. (2008) Methane Storage in Dry Water Gas Hydrates. Journal of the American Chemical Society, 130, 11608-11609. http://dx.doi.org/10.1021/ja8048173
[5]
Forny, L., Perzon, I., Saleh, K., Guigon, P. and Komunjer, L. (2007) Storing Water in Powder Form by Self-Assembling Hydrophobic Silica Nanoparticles. Powder Technologies, 171, 15-24. http://dx.doi.org/10.1016/j.powtec.2006.09.006
[6]
Forny, L., Saleh, K., Pezron, I., Komunjer, L. and Guigon, P. (2009) Influence of Mixing Characteristics for Water Encapsulation by Self-Assembling Hydrophobic Silica Nanoparticles. Powder Technologies, 189, 263-269. http://dx.doi.org/10.1016/j.powtec.2008.04.030
[7]
Saleh, K., Forny, L., Guigon, P. and Pezron, I. (2011) Dry Water: From Physic-Chemical Aspects to Process-Related Parameters. Chemical Engineering Research and Design, 89, 537-544. http://dx.doi.org/10.1016/j.cherd.2010.06.005
[8]
Shirato, K. and Satoh, M. (2011) “Dry Ionic Liquid” as a New Comer to “Dry Matter”. Soft Matter, 7, 7191-7193. http://dx.doi.org/10.1039/c1sm05999h
[9]
Miyake, M. and Satoh, M. (2015) Preparation Conditions of Dry Matter. Kobunshi Ronbunshu, 72, 617-623. http://dx.doi.org/10.1295/koron.2015-0026
[10]
Carter, B.O., Wang, W., Adams, D.J. and Cooper, A.I. (2010) Gas Storage in “Dry Water” and “Dry Gel” Clathrates. Langmuir, 26, 3186-3193. http://dx.doi.org/10.1021/la903120p
[11]
Aussillous, P. and Quéré, D. (2001) Liquid Marbles. Nature, 411, 924-927. http://dx.doi.org/10.1038/35082026
[12]
McEleney, P., Walker, G.M., Larmour, I.A. and Bell, S.E.J. (2009) Liquid Marble Formation Using Hydrophobic Powders. Chemical Engineering Journal, 147, 373-382. http://dx.doi.org/10.1016/j.cej.2008.11.026
[13]
Binks, B.P. and Tyowua, A.T. (2013) Influence of the Degree of Fluorination on the Behaviour of Silica Particles at Air-Oil Surfaces. Soft Matter, 9, 834-845. http://dx.doi.org/10.1039/C2SM27395K
[14]
Tan, T.T.Y., Ahsan, A., Reithofer, M.R., Tay, S.W., Tan, S.Y., Hor, T.S.A., Chin, J.M., Chew, B.K.J. and Wang, X. (2014) Photoresponsive Liquid Marbles and Dry Water. Langmuir, 30, 3448-3454. http://dx.doi.org/10.1021/la500646r
[15]
Carter, B.O., Adams, D.J. and Cooper, A.I. (2010) Pausing a Stir: Heterogeneous Catalysis in “Dry Water”. Green Chemistry, 12, 783-785. http://dx.doi.org/10.1039/b922508k
[16]
Yang, Z.-Z., Zhao, Y.-N. and He, L.-N. (2011) CO2 Chemistry: Task-Specific Ionic Liquids for CO2 Capture/Activation and Subsequent Conversion. RSC Advances, 1, 545-567. http://dx.doi.org/10.1039/c1ra00307k
[17]
Romanos, G.E., Shulz, P.S., Bahlmann, M., Wasserscheid, P., Sapalidis, A., Katsaros, F.K., Athanasekou, C.P., Beltsios, K. and Kanellopoulos, N.K. (2014) CO2 Capture by Novel Supported Ionic Liquid Phase Systems Consisting of Silica Nanoparticles Encapsulating Amine-Functionalized Ionic Liquids. Journal of Physical Chemistry C, 118, 24437-24451. http://dx.doi.org/10.1021/jp5062946
[18]
Thomassen, P.L., Kunov-Kruse, A.J., Mossin, S.L., Kolding, H., Kegnas, S., Riisager, A. and Fehrmann, R. (2013) Separation of Flue Gas Components by SILP (Supported Ionic Liquid-Phase) Absorbers. ECS Transactions, 50, 433-442. http://dx.doi.org/10.1149/05011.0433ecst
[19]
Nurul, S.M., Bustam, M.A., Yunus, N.M. and Man, Z. (2014) Solid Supported [hmim] [Tf2N] for CO2 Adsorption. Advanced Materials Research, 879, 149-154. http://dx.doi.org/10.4028/www.scientific.net/AMR.879.149
[20]
Kolding, H., Fehrmann, R. and Riisager, A. (2012) CO2 Capture Technologies: Current Status and New Directions Using Supported Ionic Liquid Phase (SILP) Absorbers. Science China Chemistry, 55, 1648-1656. http://dx.doi.org/10.1007/s11426-012-4683-x
[21]
Shiflett, M.B., Drew, D.W., Cantini, R.A. and Yokozeki, A. (2010) Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-Methylimidazolium Acetate. Energy and Fuels, 24, 5781-5789. http://dx.doi.org/10.1021/ef100868a
[22]
Rochelle, G.T. (2009) Amine Scrubbing for CO2 Capture. Science, 325, 1652-1654. http://dx.doi.org/10.1126/science.1176731
[23]
Schuermann, J., Huber, T., LeCorre, D., Mortha, G., Sellier, M., Duchemin, B. and Staiger, M.O. (2016) Surface Tension of Concentrated Cellulose Solutions In 1-Ethyl-3-Methyli-midazolium Acetate. Cellulose, 23, 1043-1050. http://dx.doi.org/10.1007/s10570-015-0850-5
[24]
Shiflett, M.B., Kasprzak, D.J., Junk, C.P. and Yokozeki, A. (2008) Phase Behavior of {Carbon Dioxide + [bmim][Ac]} Mixtures. Journal of Chemical Thermodynamics, 40, 25-31. http://dx.doi.org/10.1016/j.jct.2007.06.003
[25]
Yokozeki, A., Shiflett, M.B., Junk, C.P., Grieco, L.M. and Foo, T. (2008) Physical and Chemical Absorption of Carbon Dioxide in Room-Temperature Ionic Liquids. Journal of Physical Chemistry B, 112, 16654-16663. http://dx.doi.org/10.1021/jp805784u
[26]
Maginn, E.J. (2005) Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents. Quarterly Technical Reports to DOE, 1-12.
[27]
Cadena, C., Anthony, J.L., Shah, J.K., Morrow, T.I., Brennecke, J.F. and Maginn, E.J. (2004) Why Is CO2 So Soluble in Imidazolium-Based Ionic Liquids? Journal of the American Chemical Society, 126, 5300-5308. http://dx.doi.org/10.1021/ja039615x
[28]
Gurau, G., Rodriguez, H., Kelly, S.P., Janiczek, P., Kalb, R.S. and Rogers, R.D. (2011) Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate Ionic Liquids. Angewandte Chemie, 123, 12230-12232. http://dx.doi.org/10.1002/ange.201105198
[29]
Cabaco, M.I., Besnard, M., Danten, Y. and Coutinho, J.A.P. (2012) Carbon Dioxide in 1-Butyl-3-Methyl Imidazolium Acetate. I. Unusual Solubility Investigated by Raman Spectroscopy and DFT Calculations. Journal of Physical Chemistry A, 116, 1605-1620. http://dx.doi.org/10.1021/jp211211n
[30]
Chen, Y., Zhang, Y., Ke, F., Zhou, J., Wang, H. and Liang, D. (2011) Solubility of Neutral and Charged Polymers in Ionic Liquids Studied by Laser Light Scattering. Polymer, 52, 481-488. http://dx.doi.org/10.1016/j.polymer.2010.11.034
[31]
Reynolds, A.J., Verheyen, T.V., Adeloju, S.B., Meuleman, E. and Feron P. (2012) Towards Commercial Scale Postcombustion Capture of CO2 with Monoethanolamine Solvent: Key Considerations for Solvent Management and Environmental Impacts. Environmental Science & Technology, 46, 3643-3654. http://dx.doi.org/10.1021/es204051s
[32]
Carretti, E., Dei, L., Baglioni, P. and Weiss, R.G. (2003) Synthesis and Characterization of Gels from Polyallylamine and Carbon Dioxide as Gallant. Journal of the American Chemical Society, 125, 5121-5129. http://dx.doi.org/10.1021/ja034399d
[33]
Yu, H., Wu, Y.T., Jiang, Y.-Y., Zhou, Z.Z. and Zhang, Z.-B. (2009) Low Viscosity Amino Acid Liquids with Asymmetric Tetraalkylammonium Cations for Fast Absorption of CO2. New Journal of Chemistry, 33, 2385-2390. http://dx.doi.org/10.1039/b9nj00330d
[34]
Zhang, X., Zhang, X., Dong, H., Zhao, Z., Zhang, S. and Huang, Y. (2012) Carbon Capture with Ionic Liquids: Overview and Progress. Energy & Environmental Science, 5, 6668-6681. http://dx.doi.org/10.1039/c2ee21152a