The Dose
Volume Histograms are tools commonly used in medical physics, for the analysis
of doses delivered to the tumors and organs at risk, during radiotherapy
treatments. However, there are few studies in the literature showing in details
the steps of its construction. This work presents the implementation and
evaluation of a computational methodology, for the construction of Dose Volume
histograms, generated from simulations using anthropomorphic and voxel
phantoms, in conjunction with the Monte Carlo code MCNP. The methodology was
evaluated considering brachytherapy planning of low dose rate, using 108 seeds
of I-125 with individual activities of 0.33 mCi performed on the simulator in
voxel recommended by ICRP 110. The dosimetric analysis after implantation
showed that the prostate received doses ranging from 0 to 360 Gy. We found the
values of 50, 145 and 160 Gy for the parameters D100,
D90 and D80 and 28%, 90%, 92% and
95% for the parameters V200,
V100, V90 and
V80. The rectum and bladder received maximum doses equal
to 41 and 60 Gy and found the values of 39 and 22 Gy and 58 and 42 Gy to the
parameters D0.1cc and D2cc,
respectively. The results after dosimetric implant proved satisfactory, which
validate the methodology described above.
References
[1]
Yoriyaz, H. (2009) Monte Carlo Method: Principles and Application in Medical Physics. Revista Brasileira de Física Médica, 3, 141-149.
[2]
Reis Junior, J.P., Menezes, A.F., Souza, E.M., Facure, A. Medeiros, J.A.C. and Silva, A.X. (2012) Dose Optimization in 125I Permanent Seed Implants Using the Monte Carlo Method. Computer Physics Communications, 183, 847-852. http://dx.doi.org/10.1016/j.cpc.2011.12.005
[3]
Pelowitz, D.B. (2005) MCNPXTM User’s Manual, Version 2.5.0. Los Alamos National Laboratory Report LA-CP-05-0369.
[4]
Boia, L.S., Menezes, A.F., Cardoso, M.A.C., et al. (2012) Application of Digital Image Processing for the Generation of Voxels Phantoms for Monte Carlo Simulation. Applied Radiation and Isotopes, 70, 144-148. http://dx.doi.org/10.1016/j.apradiso.2011.08.017
[5]
Thalhofer, J.L., Rebello, W.F., Correa, S.C.A., Silva, A.X., Souza, E.M. and Batista, D.V.S. (2013) Calculation of Dose in Healthy Organs, during Radiotherapy 4-Field Box 3D Conformal for Prostate Cancer, Simulation of the Linac 2300, Radiotherapy Room and MAX Phantom. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2, 61-68. http://dx.doi.org/10.4236/ijmpcero.2013.22009
[6]
Martins, M.C., Cordeiro, T.P.V., Silva, A.X., Souza-Santos, D., Queiroz-Filho, P.P. and Huant, J.G. (2013) Dose Conversion Coefficients for ICRP 110 Voxel Phantom in the Geant4 Monte Carlo Code. Radiation Physics and Chemistry, 95, 309-312. http://dx.doi.org/10.1016/j.radphyschem.2013.04.030
[7]
Kramer, R., Vieira, J.W., Khoury, H.J., Lima, F.R.A. and Fuelle, D. (2003) All about MAX: A Male Adult Voxel Phantom for Monte Carlo Calculations in Radiation Protection Dosimetry. Physics in Medicine and Biology, 48, 1239-1262. http://dx.doi.org/10.1088/0031-9155/48/10/301
[8]
ICRP (2009) Adult Reference Computational Phantom. International Commission on Radiological Protection. Pergamon Press, Oxford.
[9]
Drzymala, R.E., Mohan, R., Brewster, L., et al. (1991) Dose-Volume Histograms. International Journal of Radiation Oncology, Biology and Physics, 21, 71-78. http://dx.doi.org/10.1016/0360-3016(91)90168-4
[10]
Pyakuryal, A., Myint, W.K., Gopalakrishnan, M., Jang, S., Logemann, J.A. and Mittal, B.B. (2010) A Computational Tool for the Efficient Analysis of Dose-Volume Histograms for Radiation Therapy Treatment Plans. Journal of Applied Clinical Medical Physics, 11, 3013-3041.
[11]
Trinidade, B.M., Chistóvão, M.T., Trindade, D. de F.M., Falcão, P.L. and de Campos, T.P.R. (2012) Comparative Dosimetry of Prostate Brachytherapy with I-125 and Pd-103 Seeds via SISCODES/MCNP. Radiologia Brasileira, 45, 1443-1450.
[12]
Duggan, D.M. (2004) Improved Radial Dose Function Estimation Using Current Version MCNP Monte-Carlo Simulation: Model 6711 and ISC3500 125I Brachytherapy Sources. Applied Radiation and Isotopes, 61, 1443-1450. http://dx.doi.org/10.1016/j.apradiso.2004.05.070
[13]
Rivard, M.J. (1999) Refinements to the Geometry Factor Used in the AAPM Task Group Report No. 43 Necessary for Brachytherapy Dosimetry Calculations. Medical Physics, 26, 2445-2450. http://dx.doi.org/10.1118/1.598764
[14]
Boia, L.S., Junior, J.P.R., Menezes, A.F. and Silva, A.X. (2014) Computational System to Create an Entry File for Replicating I-125 Seeds Simulating Brachytherapy Case Studies Using the MCNPX Code. International Journal of Cancer Therapy and Oncology, 2, 2445-2450. http://dx.doi.org/10.14319/ijcto.0202.3
[15]
Briesmeister, J.F. (1997) MCNP—A General Monte Carlo N-Particle Transporte Code, Version 4B. Report No. LA12625-M. Los Alamos National Laboratory, Los Alamos.
[16]
Riper, K.A.V. (2004) MORITZ—Geometry Tool User’ Guide. White Rock Science, Los Alamos.
[17]
Rivard, M.J., Coursey, B.M., DeWerd, L.A., et al. (2004) Update of AAPM Task Group No. 43 Report: A Revised AAPM Protocol for Brachytherapy Dose Calculations. Medical Physics, 31, 633-674. http://dx.doi.org/10.1118/1.1646040
[18]
Dolan, J., Li, Z. and Williamson, J.F. (2006) Monte Carlo and Experimental Dosimetry of an 125I Brachytherapy Seed. Medical Physics, 33, 4675-4684. http://dx.doi.org/10.1118/1.2388158
[19]
Taylor, R.E.P. and Rogers, D.W.O. (2008) An EGSnrc Monte Carlo-Calculated Database of TG-43 Parameters. Medical Physics, 35, 4228-4242. http://dx.doi.org/10.1118/1.2965360
[20]
Nath, R., Bice, W.S., Butler, W.M., et al. (2009) AAPM Recommendations on Dose Prescription and Reporting Methods for Permanent Interstitial Brachytherapy for Prostate Cancer: Report of the American Association of Physicists in Medicine Task Group 137. Medical Physics, 36, 5310-5322. 2445-2450.
[21]
Marcu, L. and Quach, K. (2006) The Role of Post-Implant Dosimetry in the Quality Assessment of Prostate Implants. The RAH Experience. Australasian Physical and Engineering Science in Medicine, 29, 310-314. http://dx.doi.org/10.1007/BF03178396
[22]
Yu, Y, Anderson, L.L., Li, Z., et al. (1999) Permanent Prostate Seed Implant Brachytherapy: Report of the American Association of Physicists in Medicine Task Group No. 64. Medical Physics, 26, 2054-2076. http://dx.doi.org/10.1118/1.598721