全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recent Strategies for the Development of Biosourced-Monomers, Oligomers and Polymers-Based Materials: A Review with an Innovation and a Bigger Data Focus

DOI: 10.4236/jbnb.2016.74017, PP. 167-213

Keywords: Biomass, Biosourced Monomers, Advanced Biomaterials, Chemical Building Blocks, Design Strategy, Metabolic Engineering, Innovation, Bigger Data

Full-Text   Cite this paper   Add to My Lib

Abstract:

After setting the ground of the quantum innovation potential of biosourced entities and outlining the inventive spectrum of adjacent technologies that can derive from those, the current review highlights, with the support of Bigger Data approaches, and a fairly large number of articles, more than 250 and 10,000 patents, the following. It covers an overview of biosourced chemicals and materials, mainly biomonomers, biooligomers and biopolymers; these are produced today in a way that allows reducing the fossil resources depletion and dependency, and obtaining environmentally-friendlier goods in a leaner energy consuming society. A process with a realistic productivity is underlined thanks to the implementation of recent and specifically effective processes where engineered microorganisms are capable to convert natural non-fossil goods, at industrial scale, into fuels and useful high-value chemicals in good yield. Those processes, further detailed, integrate: metabolic engineering involving 1) system biology, 2) synthetic biology and 3) evolutionary engineering. They enable acceptable production yield and productivity, meet the targeted chemical profiles, minimize the consumption of inputs, reduce the production of by-products and further diminish the overall operation costs. As generally admitted the properties of most natural occurring biopolymers (e.g., starch, poly (lactic acid), PHAs.) are often inferior to those of the polymers derived from petroleum; blends and composites, exhibiting improved properties, are now successfully produced. Specific attention is paid to these aspects. Then further evidence is provided to support the important potential and role of products deriving from the biomass in general. The need to enter into the era of Bigger Data, to grow and increase the awareness and multidimensional role and opportunity of biosourcing serves as a conclusion and future prospects. Although providing a large reference database, this review is largely initiatory, therefore not mimicking previous classic reviews but putting them in a multiplying synergistic prospective.

References

[1]  WIPO (2016).
http://www.wipo.int/patentscope/en/programs/patent_landscapes/reports/microalgae.html
[2]  Rebouillat, S. (2013) A Science & Business Equation for Collaborative Corporate Innovation. Business Strategy, IP Strategy, R&D Strategy: An All-in-One Business Model. A Review with a Bio-Technology & Green Chemistry Focus. International Journal of Innovation and Applied Studies, 4, 1-19.
[3]  Rebouillat, S. and Lapray, M. (2014) Bio-Inspired and Bio-Inspiration: A Disruptive Innovation Opportunity or a Matter of “Semantic”? A Review of a “Stronger than Logic” Creative Path Based on Curiosity and Confidence. International Journal of Innovation and Applied Studies, 6, 299-325.
[4]  Lapray, D. and Rebouillat, S. (2014) “Bigger Data” Visualization to Visual Analytics: A Path to Innovation. “Happening, Definitely! Misleading, Possibly?” A Review of Some Examples Applicable to IP Discovery. International Journal of Innovation and Applied Studies, 7, 1251-1273).
[5]  Rebouillat, S. (2016) Aramids: “Disruptive”, Open and Continuous Innovation. In: Chen, X., Ed., Advanced Fibrous Composite Materials for Ballistic Protection, Woodhead Publishing Limited, Amsterdam, Boston, Cambridge, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney and Tokyo, 11-70.
http://dx.doi.org/10.1016/b978-1-78242-461-1.00002-9
[6]  Rebouillat, S. and Knowlton, S. (2009) Dielectric Heat-Transfer Fluid. CA2754291A1; CN102365343A; EP2411481A2; US9185826; US20140036447; WO2010111698A2.
[7]  Rebouillat, S., Thoonen G.F., Rochette, F. and Steffenino, B. (2011) Liquid Compositions Used as Insulating and Heat Transfer Means, Electrical Devices Containing Said Compositions and Preparation Methods for Such Compositions. CN103988266A; EP2764520A2; US20130099182; WO2013052956A3.
[8]  Rebouillat, S., Olesen, J. and Pfister, F. (1998-2003) Fiber Used in a Fiber Optic Cable-Coated with a Water Blocking Material that Includes Polygalactomannan. EP0985066B1; WO0031752; EP1133774B9; US6891003.
[9]  Rebouillat, S. and Pla, F. (2013) State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications. Journal of Biomaterials and Nanobiotechnology, 4,165-188.
http://dx.doi.org/10.4236/jbnb.2013.42022
[10]  Rebouillat, S. and Ortega-Requena, S. (2015) Potential Applications of Milk Fractions and Valorization of Dairy By-Products: A Review of the State-of-the-Art Available Data, Outlining the Innovation Potential from a Bigger Data Standpoint. Journal of Biomaterials and Nanobiotechnology, 6, 176-203.
http://dx.doi.org/10.4236/jbnb.2015.63018
[11]  Lapray, M. and Rebouillat, S. (2014) Innovation Review: Closed, Open, Collaborative, Disruptive, Inclusive, Nested… and Soon Reverse. How About the Metrics: Dream and Reality. International Journal of Innovation and Applied Studies, 9, 1-28.
[12]  Rebouillat, S. and Lapray, D. (2014) A Review Assessing the “Used in the Art” Intellectual Property Search Methods and the Innovation Impact therewith. International Journal of Innovation and Applied Studies, 5, 160-191.
[13]  Morris, D.J. and Ahmed, I. (1992) The Carbohydrate Economy: Making Chemicals and Industrial Materials from Plant Matter. Institute of Local Self Reliance, Washington DC.
[14]  Carole, T.M., Pellegrino, J. and Paster, M.D. (2004) Opportunities in the Industrial Biobased Products Industry. Applied Biochemistry Biotechnology, 115, 871-885.
http://dx.doi.org/10.1385/ABAB:115:1-3:0871
[15]  Archambault, E., Bertrand, F., Coté, G., Craig-Dupont, O., Larivière V. and Gagné, é.V. (2004) Towards a Canadian R&D Strategy for Bioproducts and Bioprocesses. National Research Council of Canada.
http://www.science-metrix.com/pdf/SM_2003_014_NRC_Canadian_R&D_Strategy.pdf
[16]  Hüsing, B., Angerer, G., Gaisser, F. and Marscheider-Weidemann, F. (2003) Biotechnological Production of Value-Added Substances from Industrial Waste Streams with Special Reference to Energy Carriers and Biopolymers. Ber.-Umweltbundesamt (Ger).
[17]  Paster, M.D., Pellegrino, J. and Carole, T.M. (2003) Industrial Bioproducts: Today and Tomorrow. Office of the Biomass Program, Office of Energy Efficiency and Renewable Energy, US Department of Energy, Washington DC.
[18]  Patel, M., Crank, M., Dornburg, V., Hermann, B., Hüsing, B., Overbeek, L., Terragni, F. and Recchia, E. (2006) Medium and Long-Term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources—The Potential of White Biotechnology: The Brew Project. European Commission’s GROWTH Programme (DG Research), Utrecht.
http://www.chem.uu.nl/brew/
[19]  Werpy, T.A. and Petersen, G., Eds. (2004) Top Value Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Pacific Northwest National Laboratory (PNNL) and National Renewable Energy Laboratory (NREL).
http://www.osti.gov/bridge
[20]  Crank, M., Patel, M., Marscheider-Weidemann, F., Schleich, J., Hüsing, B. and Angerer, G. (2004) Techno-Economic Feasibility of Large-Scale Production of Bio-Based Polymers in Europe (Pro-BIP). European Commissions’ Institute for Prospective Technological Studies (IPTS), Sevilla.
[21]  Jarboe, L.R., Zhang, X., Wang, X., Moore, J.C., Shanmugam, K.T. and Ingram, L.O. (2010) Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology. Journal of Biomedicine and Biotechnology, 2010, Article ID: 761042.
http://dx.doi.org/10.1155/2010/761042
[22]  Lee, S.K., Howard, C., Ham, T.S., Lee, T.S. and Keasling, J.D. (2008) Metabolic Engineering of Microorganisms for Biofuels Production: From Bugs to Synthetic Biology to Fuels. Current Opinion in Biotechnology, 19, 556-563.
http://dx.doi.org/10.1016/j.copbio.2008.10.014
[23]  Park, J.H., Lee, S.Y., Kim, T.Y. and Kim, H.U. (2008) Application of Systems Biology for Bioprocess Development. Trends Biotechnology, 26, 404-412.
http://dx.doi.org/10.1016/j.tibtech.2008.05.001
[24]  Mainguet, S.E. and Liao, J.C. (2010) Bioengineering of Microorganisms for C3 to C5 Alcohols Production. Biotechnology Journal, 5, 1297-1308.
http://dx.doi.org/10.1002/biot.201000276
[25]  Blazeck, J. and Alper, H. (2010) Systems Metabolic Engineering: Genome-Scale Models and Beyond. Biotechnology Journal, 5, 647-659.
http://dx.doi.org/10.1002/biot.200900247
[26]  Committee on Biobased Industrial Products (2000) Biobased Industrial Products: Research and Commercialization Priorities. National Research Council. National Academy Press Washington DC, 162 p.
http://www.nap.edu/catalog/5295.html
[27]  Becker, J., Zelder, O., Hafner, S., Schroder, H. and Wittmann, C. (2011) From Zero to Hero-Design-Based Systems Metabolic Engineering of Corynebacterium Glutamicum for L-Lysine Production. Metabolic Engineering, 13, 159-168.
http://dx.doi.org/10.1016/j.ymben.2011.01.003
[28]  Lee, J.W., Kim, T.Y., Jang, Y.S., Choi, S. and Lee, S.Y. (2011) Systems Metabolic Engineering for Chemicals and Materials. Trends in Biotechnology, 29, 370-378.
http://dx.doi.org/10.1016/j.tibtech.2011.04.001
[29]  Lee, J.W., Na, D., Park, J.M., Lee, J., Choi, S. and Lee, S.Y. (2012) Systems Metabolic Engineering of Microorganisms for Natural and Non-Natural Chemicals. Nature Chemical Biology, 8, 536-546.
http://dx.doi.org/10.1038/nchembio.970
[30]  Cho, C., Choi, S.Y., Luo, Z.W. and Lee, S. Y. (2015) Recent Advances in Microbial Production of Fuels and Chemicals Using Tools and Strategies of Systems Metabolic Engineering. Biotechnology Advances, 33, 1455-1466.
http://dx.doi.org/10.1016/j.biotechadv.2014.11.006
[31]  Jang, Y.S., Lee, J.Y., Lee, J., Park, J.H., Im, J.A., Eom, M.H., Lee, J., Lee, S.H., Song, H., Cho, J.H., Seung, D.Y. and Lee, S.Y. (2012) Enhanced Butanol Production Obtained by Reinforcing the Direct Butanol-Forming Route in Clostridium Acetobutylicum. mBio, 3, e00314-12.
http://dx.doi.org/10.1128/mbio.00314-12
[32]  Atsumi, S., Hanai, T. and Liao, J.C. (2008) Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels. Nature, 451, 86-89.
http://dx.doi.org/10.1038/nature06450
[33]  Shen, C.R., Lan, E.I., Dekishima, Y., Baez, A., Cho, K.M. and Liao, J.C (2011) Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia Coli. Applied and Environmental Microbiology, 77, 2905-2915.
http://dx.doi.org/10.1128/AEM.03034-10
[34]  Na, D., Yoo, S.M., Chung, H., Park, H., Park, J.H. and Lee, S.Y. (2013) Metabolic Engineering of Escherichia Coli Using Synthetic Small Regulatory RNAs. Nature Biotechnology, 31, 170-174.
http://dx.doi.org/10.1038/nbt.2461
[35]  Yoo, S.M., Na, D. and Lee, S.Y. (2013) Design and Use of Synthetic Regulatory Small RNAS to Control Gene Expression in Escherichia coli. Nature Biotechnology, 8, 1694-1707.
http://dx.doi.org/10.1038/nprot.2013.105
[36]  Flowers, D., Thompson, R.A., Birdwell, D., Wang, T. and Trinh, C.T. (2013) SMET: Systematic Multiple Enzyme Targeting—A Method to Rationally Design Optimal Strains for Target Chemical Overproduction. Biotechnology Journal, 8, 605-618.
http://dx.doi.org/10.1002/biot.201200233
[37]  Isaacs, F.J., Carr, P.A., Wang, H.H., Lajoie, M.J., Sterling, B., Kraal, L., Tolonen, A.C., Gianoulis, T.A., Goodman, D.B., Reppas, N.B., Emig, C.J., Bang, D., Hwang, S.J., Jewett, M.C., Jacobson, J.M. and Church, G.M. (2011) Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement. Science, 333, 348-353.
http://dx.doi.org/10.1126/science.1205822
[38]  Wang, H.H., Isaacs, F.J., Carr, P.A., Sun, Z.Z., Xu, G., Forest, C.R. and Church, G.M. (2009) Programming Cells by Multiplex Genome Engineering and Accelerated Evolution. Nature, 460, 894-898.
http://dx.doi.org/10.1038/nature08187
[39]  Thieffry, D. (2007) Dynamical Roles of Biological Regulatory Circuits. Briefings in Bioinformatics, 8, 220-255.
http://dx.doi.org/10.1093/bib/bbm028
[40]  Park, J.H., Lee, K.H., Kim, T.Y. and Lee, S.Y. (2007) Metabolic Engineering of Escherichia Coli for the Production of L-Valine Based on Transcriptome Analysis and in Silico Gene Knockout Simulation. Proceedings of the National Academy of Sciences of the United States of America, 104, 7797-7802.
http://dx.doi.org/10.1073/pnas.0702609104
[41]  Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., Khandurina, J., Trawick, J.D., Osterhout, R.E., Stephen, R., Estadilla, J., Teisan, S., Schreyer, H.B., Andrae, S., Yang, T.H., Lee, S.Y., Burk, M.J. and Van Dien, S. (2011) Metabolic Engineering of Escherichia coli for Direct Production of 1,4-Butanediol. Nature Chemical Biology, 7, 445-452.
http://dx.doi.org/10.1038/nchembio.580
[42]  Park, J.H., Kim, T.Y., Lee, K.H. and Lee, S.Y. (2011) Fed-Batch Culture of Escherichia coli for L-Valine Production Based on in Silico Flux Response Analysis. Biotechnology and Bioengineering, 108, 934-946.
http://dx.doi.org/10.1002/bit.22995
[43]  Song, H., Kim, T.Y., Choi, B.K., Choi, S.J., Nielsen, L.K., Chang, H.N. and Lee, S.Y. (2008) Development of Chemically Defined Medium for Mannheimia succiniciproducens Based on Its Genome Sequence. Applied Microbiology and Biotechnology, 79, 263-272.
http://dx.doi.org/10.1007/s00253-008-1425-2
[44]  Thompson, R.A. and Trinh, C.T. (2014) Enhancing Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae through Metabolic Engineering and Medium Optimization. Biotechnology and Bioengineering, 111, 2200-2208.
http://dx.doi.org/10.1002/bit.25292
[45]  Causey, T.B., Zhou, S., Shanmugam, K.T. and Ingram, L.O. (2003) Engineering the Metabolism of Escherichia coli W3110 for the Conversion of Sugar to Redox-Neutral and Oxidized Products: Homoacetate Production. Proceedings of the National Academy of Sciences of the United States of America, 100, 825-832.
http://dx.doi.org/10.1073/pnas.0337684100
[46]  Zhu, Y., Eiteman, M.A., DeWitt, K. and Altman, E. (2007) Homolactate Fermentation by Metabolically Engineered Escherichia coli Strains. Applied and Environmental Microbiology, 73, 456-464.
http://dx.doi.org/10.1128/AEM.02022-06
[47]  Pillai, C.K.S. (2010) Challenges for Monomers and Polymers: Novel Design Strategies and Engineering to Develop Advanced Polymers. Designed Monomers and Polymers, 13, 87-121.
http://dx.doi.org/10.1163/138577210X12634696333190
[48]  Erickson, B., Nelson, J.E. and Winters, P. (2011) Perspective on Opportunities in Industrial Biotechnology in Renewable Chemicals. Biotechnology Journal, 7, 76-185.
[49]  Adkins, J., Pugh, S., McKenna, R. and Nielsen, D.R. (2012) Engineering Microbial Chemical Factories to Produce Renewable Biomonomers. Frontiers in Microbiology, 3, 313.
http://dx.doi.org/10.3389/fmicb.2012.00313
[50]  Lee, J.W., Kim, H.U., Choi, S., Yi, J. and Lee, S.Y. (2011) Microbial Production of Building Block Chemicals and Polymers. Current Opinion in Biotechnology, 22, 758-767.
http://dx.doi.org/10.1016/j.copbio.2011.02.011
[51]  Curran, K.A. and Alper, H.S. (2012) Expanding the Chemical Palate of Cells by Combining Systems Biology and Metabolic Engineering. Metabolic Engineering, 14, 289-297.
http://dx.doi.org/10.1016/j.ymben.2012.04.006
[52]  Polman, K. (1994) Review and Analysis of Renewable Feed Stocks for the Production of Commodity Chemicals. Applied Biochemistry and Biotechnology, 45, 709-722.
http://dx.doi.org/10.1007/BF02941842
[53]  Sudesh, K. and Iwata, T. (2008) Sustainability of Biobased and Biodegradable Plastics. CLEAN—Soil Air Water, 36, 433-442.
http://dx.doi.org/10.1002/clen.200700183
[54]  Mohanty, A.K., Misra, M. and Hinrichsen, G. (2000) Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromolecular Materials and Engineering, 1, 276-277.
http://dx.doi.org/10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w
[55]  European Bioplastics Driving the Evolution of Plastics (2012).
http://www.european-bioplastics.org/bioplastics
[56]  Shen, K., Haufe, J. and Patel, M.K. (2009) Product Overview and Market Projection of Emerging Bio-Based Plastics. Final Report of Utrecht University to European Bioplastics.
[57]  Brunow, G. (2001) Methods to Reveal the Structure of Lignin. In: Hofrichter, M. and Steinbüchel, A., Eds., Biopolymers: Lignin, Humic Substances and Coal, Vol. 1, Wiley-VCH, Weinheim, 89-116.
[58]  Mohamad Ibrahim, M.N., Azian, H. and Mohd Yusop, M.R. (2006) Separation and Characterization of the Vanillin Compound from Soda Lignin. Journal Technology, 44, 83-94.
[59]  Jonsson, A.S., Nordin, A.K. and Wallberg, O. (2008) Concentration and Purification of Lignin in Hardwood Kraft Pulping Liquor by Ultrafiltration and Nanofiltration. Chemical Engineering Research and Design, 86, 1271-1280.
http://dx.doi.org/10.1016/j.cherd.2008.06.003
[60]  Roberts, V.M., Stein, V., Reiner, T., Lemonidou, A., Li, X. and Lercher, J.A. (2011) Towards Quantitative Catalytic Lignin Depolymerization. Chemistry—A European Journal, 17, 5939-5948.
http://dx.doi.org/10.1002/chem.201002438
[61]  Li, J., Henriksson, G. and Gellerstedt, G. (2007) Lignin Depolymerization/Repolymerization and Its Critical Role for Delignification of Aspen Wood by Steam Explosion. Bioresource Technology, 98, 3061-3068.
http://dx.doi.org/10.1016/j.biortech.2006.10.018
[62]  Pandey, M.P. and Kim, C.S. (2011) Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical Engineering & Technology, 34, 29-41.
http://dx.doi.org/10.1002/ceat.201000270
[63]  Stewart, D. (2008) Transesterification of Epoxidized Soybean Oil to Prepare Epoxy Methyl Esters. Industrial Crops and Products, 27, 202-207.
http://dx.doi.org/10.1016/j.indcrop.2007.07.008
[64]  Babu, R.P., O’Connor, K. and Seeram, R. (2013) Current Progress on Bio-Based Polymers and Their Future Trends. Progress in Biomaterials, 2, 1-16.
http://dx.doi.org/10.1186/2194-0517-2-8
[65]  Klemm, D., Heublein, B., Fink, H.P. and Bohn, A. (2005) Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44, 3358-3393.
http://dx.doi.org/10.1002/anie.200460587
[66]  Simon, J., Müller, H.P., Koch, R. and Müller, V. (1998) Thermoplastic and Biodegradable Polymers of Cellulose. Polymer Degradation and Stability, 59, 107-115.
http://dx.doi.org/10.1016/S0141-3910(97)00151-1
[67]  Wang, Z.-F., Fang, L., Zhang, K.-X. and Fu, X. (2008) Application and Research Progress of Starch in Polymer Materials. Journal for Clinical Rehabilitation Tissue Engineering Research, 19, 3789-3792.
[68]  Kalambur, S. and Rizvi, S.S.H. (2006) An Overview of Starch Based Plastic Blends From Reactive Extrusion. Journal of Plastic Film & Sheeting, 22, 39-58.
http://dx.doi.org/10.1177/8756087906062729
[69]  Pillai, C.K.S., Willi, P. and Sharma, C.P. (2009) Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Progress in Polymer Science, 34, 641-678.
http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001
[70]  Hearle, J.W.S. (2007) Protein Fibers: Structural Mechanics and Future Opportunities. Journal of Materials Science, 42, 8010-8019.
http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001
[71]  Poole, A.J., Church, J.S. and Huson, M.G. (2008) Environmentally Sustainable Fibers from Regenerated Protein. Biomacromolecules, 10, 1-8.
http://dx.doi.org/10.1021/bm8010648
[72]  Heino, J., Huhtala, M., Kapyla, J. and Johnson, M.S. (2009) Evolution of collagen-Based Adhesion Systems. International Journal of Biochemistry & Cell Biology, 41, 341-348.
http://dx.doi.org/10.1016/j.biocel.2008.08.021
[73]  Habibi, Y., Goffin, A.L., Schiltz, N., Duquesne, E., Dubois, P. and Dufresne, A. (2008) Bionanocomposites Based on Poly(Epsilon-Caprolactone)-Grafted Cellulose Nanocrystals by Ring-Opening Polymerization. Journal of Materials Science, 18, 5002-5010.
[74]  Shatkin, J.A., Wegner, T.H., Bilek, E.M. and Cowie, J. (2014) Market Projections of Cellulose Nanomaterial-Enabled Products—Part 1: Applications. TAPPI Journal, 13, 9-16.
[75]  Moon, R.J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. (2011) Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chemical Society Reviews, 40, 3941-3994.
http://dx.doi.org/10.1039/c0cs00108b
[76]  Hafren, J. and Cordova, A. (2005) Direct Organocatalytic Polymerization from Cellulose Fibers. Macromolecular Rapid Communications, 26, 82-86.
http://dx.doi.org/10.1002/marc.200400470
[77]  Lonnberg, H., Zhou, Q., Brumer, H., Teeri, T.T., Malmstrom, E. and Hult, A. (2006) Grafting of Cellulose Fibers With Poly(Epsilon-Caprolactone) and Poly(L-Lactic Acid) via Ring-Opening Polymerization. Biomacromolecules, 7, 2178-2185.
http://dx.doi.org/10.1021/bm060178z
[78]  Berezina, N., Nys, J. and Yada, B. (2013) Method for the Analysis of Grafted Cellulosic Materials. Chemical Engineering Transactions, 32, 1003-1008.
[79]  Tester, R.F. and Karkalas, J. (2002) Starch. In: De Baets, S., Vandamme, E.J. and Steinbuchel, A., Eds., Biopolymers: Polysaccharides II, Wiley-VCH, Weinheim, 381-438.
[80]  Lourdin, D., Coignard, L., Bizot, H. and Colonna, P. (1997) Influence of Equilibrium Relative Humidity and Plasticizer Concentration on the Water Content and Glass Transition of Starch Materials. Polymer, 38, 5401-5406.
http://dx.doi.org/10.1016/S0032-3861(97)00082-7
[81]  Avella, M., de Vlieger, J.J., Enrico, M.E., Fischer, S., Vacca, P. and Volpe, M.G. (2005) Biodegradable Starch/Clay Nanocomposite Films for Food Packaging Applications. Food Chemistry, 93, 467-474.
http://dx.doi.org/10.1016/j.foodchem.2004.10.024
[82]  Averous, L., Fringant, C. and Moro, L. (2001) Starch-Based Biodegradable Materials Suitable for Thermoforming Packaging. Starch, 53, 368-371.
http://dx.doi.org/10.1002/1521-379X(200108)53:8<368::AID-STAR368>3.0.CO;2-W
[83]  Bae, K.P. and Moo-Moo, K. (2010) Applications of Chitin and Its Derivatives in Biological Medicine. International Journal of Molecular Sciences, 11, 5152-5164.
http://dx.doi.org/10.3390/ijms11125152
[84]  Ramya, R., Venkatesan, J., Kim, S.K. and Sudha, P.N. (2012) Biomedical Applications of Chitosan: An Overview. Journal of Biomaterial Tissue Engineering, 2, 100-111.
http://dx.doi.org/10.1166/jbt.2012.1030
[85]  Rekha, M.R. and Chrndra, P.S. (2007) Pullulan as a Promising Biomaterial for Biomedical Applications: A Perspective. Trends in Biomaterials and Artificial Organs, 20, 21-45.
[86]  Zajic, J.E. and LeDuy, A. (1973) Flocculant and Chemical Properties of a Polysaccharide from Pullularia pullulans. Applied Microbiology, 25, 628-635.
[87]  Singh, R.S., Saini, G.K. and Kennedy, J.F. (2008) Pullulan: Microbial Sources, Production and Applications. Carbohydrate Polymers, 73, 515-531.
http://dx.doi.org/10.1016/j.carbpol.2008.01.003
[88]  Cheng, K.C., Demirci, A. and Catchmark, J.M. (2011) Pullulan: Biosynthesis, Production, and Applications. Applied Microbiology and Biotechnology, 92, 29-44.
http://dx.doi.org/10.1007/s00253-011-3477-y
[89]  Pla, F. and Robert, A. (1984) Etude du Caractère Réticulé de la Lignine in Situ. Holzforschung, 38, 213-220.
http://dx.doi.org/10.1515/hfsg.1984.38.4.213
[90]  Yan, J.F., Pla, F., Kondo, R., Dolk, M. and Mc Carthy, J.L. (1984) Lignin XXI. Depolymerisation by Bond Cleavage Reactions and Degelation.Macromolecules, 17, 2137-2142.
http://dx.doi.org/10.1021/ma00140a046
[91]  Pla, F., Dolk, M., Yan, J.F. and Mc Carthy, J.L. (1985) Macromolecular Characteristics of Alkali and Organosolv Lignins from Black Cottonwood. Proceedings of the 3rd International Symposium on Wood and Pulping Chemistry, Vancouver, 26-29 August 1985, 65-71.
[92]  Pla, F. and Yan, J.F. (1984) Branching and Functionality of Lignin Molecules. Journal of Wood Chemistry and Technology, 4, 285-299.
http://dx.doi.org/10.1080/02773818408070649
[93]  Thakur, V.K., Thakur, M. K., Raghavan, P., and Kessler, M. R. (2014) Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chemical Engineering, 2, 1072-1092.
http://dx.doi.org/10.1021/sc500087z
[94]  Cheradame, H., Detoisien, M., Gandini, A., Roux G. and Pla, F. (1989) Polyurethane from Kraft Lignin. British Polymer Journal, 21, 269-275.
http://dx.doi.org/10.1002/pi.4980210314
[95]  Czaja, W., Krystynowicz, A., Bielecki, S. and Brown, R.M. (2006) Microbial Cellulose—The Natural Power to Heal Wounds. Biomaterials, 27, 145-151.
http://dx.doi.org/10.1016/j.biomaterials.2005.07.035
[96]  Hoenich, N. (2006) Cellulose for Medical Applications: Past, Present, and Future. Bioresources, 1, 270-280.
[97]  Berezina, N. and Martelli, S.M. (2014) Chapter 1: Bio-Based Polymers and Materials. In: Lin, C. and Luque, R., Eds., Renewable Resources for Biorefineries, Royal Society of Chemistry, Series: Green Chemistry, London, 1-28.
http://dx.doi.org/10.1039/9781782620181-00001
[98]  Reinecke, F. and Steinbuchel, A. (2009) Ralstonia Eutropha Strain H16 as Model Organism for PHA Metabolism and for Biotechnological Production of Technically Interesting Biopolymers. Journal of Molecular Microbiology and Biotechnology, 16, 91-108.
http://dx.doi.org/10.1159/000142897
[99]  Singh, M., Patel, S.K.S. and Kalia, V.C. (2009) Bacillus subtilis as Potential Producer for Polyhydroxyalkanoates. Microbial Cell Factories, 8, 38-48.
http://dx.doi.org/10.1186/1475-2859-8-38
[100]  Rojas-Rosas, O., Villafana-Rojas, J., Lopez-Dellamary, F.A., Nungaray-Arellano, J. and Gonzalez-Reynoso, O. (2007) Production and Characterization of Polyhydroxyalkanoates in Pseudomonas aeruginosa ATCC (9027) from Glucose, an Unrelated Carbon Source. Canadian Journal of Microbiology, 53, 840-851.
http://dx.doi.org/10.1139/W07-023
[101]  Asada, Y., Miyake, M., Miyake, J., Kurane, R. and Tokiwa, Y. (1999) Photosynthetic Accumulation of Poly-(Hydroxybutyrate) by Cyanobacteria—The Metabolism and Potential for CO2 Recycling. International Journal of Biological Macromolecules, 25, 37-42.
http://dx.doi.org/10.1016/S0141-8130(99)00013-6
[102]  Schubert, P., Steinbuchel, A. and Schlegel, H.G. (1988) Cloning of the Alcaligenes eutrophus Genes for Synthesis of Poly-Beta-Hydroxybutyric Acid (PHB) and Synthesis of PHB in Escherichia coli. Journal of Bacteriology, 170, 5837-5847.
[103]  Lee, S.Y., Choi, J.I. and Wong, H.H. (1999) Recent Advances in Polyhydroxyalkanoate Production by Bacterial Fermentation: Mini-Review. International Journal of Biological Macromolecules, 25, 31-36.
http://dx.doi.org/10.1016/S0141-8130(99)00012-4
[104]  Steinbüchel, A. and Valentin, H.E. (1995) Diversity of Bacterial Polyhydroxyalkanoic Acids. FEMS Microbiology Letters, 128, 219-228.
http://dx.doi.org/10.1111/j.1574-6968.1995.tb07528.x
[105]  Savenkova, L., Gercberga, Z., Nikolaeva, V., Dzene, A., Bibers, I. and Kalina, M. (2000) Mechanical Properties and Biodegradation Characteristics of PHB-Based Films. Process Biochemistry, 35, 537-579.
http://dx.doi.org/10.1016/S0032-9592(99)00107-7
[106]  Reis, K.C., Pereira, J., Smith, A.C., Carvalho, C.W.P., Wellner, N. and Yakimets, I. (2008) Characterization of Polyhydroxybutyrate-Hydroxyvalerate (PHB-HV)/Maize Starch Blend Films. Journal of Food Engineering, 89, 361-369.
http://dx.doi.org/10.1016/j.jfoodeng.2008.04.022
[107]  Philip, S., Keshavarz, T. and Roy, I. (2007) Polyhydroxyalkanoates: Biodegradable Polymers with a Range of Applications. Journal of Chemical Technology and Biotechnology, 2, 233-247.
http://dx.doi.org/10.1002/jctb.1667
[108]  Takahara, I., Saito, M., Inaba, M. and Murata, K. (2005) Dehydration of Ethanol into Ethylene over Solid Acid Catalysts. Catalysis Letters, 105, 249-252.
http://dx.doi.org/10.1007/s10562-005-8698-1
[109]  Hu, Y.C., Zhan, N.N., Dou, C., Huang, H., Han, Y.W., Yu, D.H. and Hu, Y. (2010) Selective Dehydration of Bio-Ethanol to Ethylene Catalyzed by Lanthanum-Phosphorous-Modified Hzsm-5, Influence of the Fusel. Biotechnology Journal, 5, 1186-1191.
http://dx.doi.org/10.1002/biot.201000139
[110]  Phillips, A.L. (2008) Bioplastics Boom. American Scientist, 96, 109-110.
[111]  Mathers, R.T. (2012) How Well Can Renewable Resources Mimic Commodity Monomers and Polymers? Journal of Polymer Science Part A: Polymer Chemistry, 50, 1-15.
http://dx.doi.org/10.1002/pola.24939
[112]  Yao, K. and Tang, C. (2013) Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 46, 1689-1712.
http://dx.doi.org/10.1021/ma3019574
[113]  Kobayashi, H. and Fukuoka, A. (2013) Synthesis and Utilisation of Sugar Compounds Derived from Lignocellulosic Biomass. Green Chemistry, 15, 1740-1763.
http://dx.doi.org/10.1039/c3gc00060e
[114]  Fenouillot, F., Rousseau, A., Colomines, G., Saint-Loup, R. and Pascault, J.-P. (2010) Polymers from Renewable 1,4:3,6-Dianhydrohexitols (Isosorbide, Isomannide and Isoidide): A Review. Progress in Polymer Science, 35, 578-622.
http://dx.doi.org/10.1016/j.progpolymsci.2009.10.001
[115]  Wee, Y.J., Kim, J.N. and Ryu, H.W. (2006) Biotechnological Production of Lactic Acid and Its Recent Applications. Food Technology and Biotechnology, 44, 163-172.
[116]  Sauer, M., Porro, D., Mattanovich, D. and Branduardi, P. (2008) Microbial Production of Organic Acids: Expanding the Markets. Trends in Biotechnology, 26, 100-108.
http://dx.doi.org/10.1016/j.tibtech.2007.11.006
[117]  Zhou, Y., Dominguez, J.M., Cao, N., Du, J .and Tsao, G.T. (1999) Optimization of L-lactic Acid Production from Glucose by Rhizopus oryzae ATCC 52311. Applied Biochemistry and Biotechnology, 78, 401–407.
http://dx.doi.org/10.1385/ABAB:78:1-3:401
[118]  Zhou, S., Causey, T.B., Hasona, A., Shanmugam, K.T. and Ingram, L.O. (2003) Production of Optically Pure D-Lactic Acid in Mineral Salts Medium by Metabolically Engineered Escherichia coli W3110. Applied and Environmental Microbiology, 69, 399-407.
http://dx.doi.org/10.1128/AEM.69.1.399-407.2003
[119]  Mazumdar, S., Clomburg, J.M. and Gonzalez, R. (2010) Escherichia coli Strains Engineered for Homofermentative Production of D-Lactic Acid from Glycerol. Applied and Environmental Microbiology, 76, 4327-4336.
http://dx.doi.org/10.1128/AEM.00664-10
[120]  Jung, Y.K., Kim, T.Y., Park, S.J. and Lee, S.Y. (2010) Metabolic Engineering of Escherichia Coli for the Production of Polylactic Acid and Its Copolymers. Biotechnology and Bioengineering, 105, 161-171.
http://dx.doi.org/10.1002/bit.22548
[121]  Yang, T.H., Kim, T.W., Kang, H.O., Lee, S.H., Lee, E.J., Lim, S.C., Oh, S.O., Song, A.J., Park, S.J. and Lee, S.Y. (2010) Biosynthesis of Polylactic Acid and Its Copolymers Using Evolved Propionate CoA Transferase and PHA Synthase. Biotechnology and Bioengineering, 105, 150-160.
http://dx.doi.org/10.1002/bit.22547
[122]  Dorgan, J.R., Lehermeier, H. and Mang, M. (2000) Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s. Journal of Polymers and the Environment, 8, 1-9.
http://dx.doi.org/10.1023/A:1010185910301
[123]  Nagasawa, N., Kaneda, A., Kanasawa, S., Yagi, T., Mitomo, H., Yoshii, F. and Tamada, M. (2005) Application of Poly(Lactic Acid) Modified by Radiation Crosslinking. Nuclear Instruments and Methods in Physic Research B, 236, 611-616.
http://dx.doi.org/10.1016/j.nimb.2005.04.052
[124]  Yang, F., Murugan, R., Wang, S. and Ramakrishna, S. (2005) Electrospinning of Nano/Micro Scale Poly(L-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering. Biomaterials, 26, 2603-2610.
http://dx.doi.org/10.1016/j.biomaterials.2004.06.051
[125]  Song, H. and Lee, S.Y. (2006) Production of Succinic Acid by Bacterial Fermentation. Enzyme and Microbial Technology, 39, 352-361.
http://dx.doi.org/10.1016/j.enzmictec.2005.11.043
[126]  Thakker, C., Martinez, I., San, K.Y. and Bennett, G.N. (2012) Succinate Production in Escherichia coli. Biotechnology Journal, 7, 213-224.
http://dx.doi.org/10.1002/biot.201100061
[127]  Lee, S.J., Lee, D.Y., Kim, T.Y., Kim, B.H. and Lee, S.Y. (2005) Metabolic Engineering of Escherichia coli for Enhanced Production of Succinic Acid, Based on Genome Comparison and in Silico Gene Knockout Simulation. Applied and Environmental Microbiology, 71, 7880-7887.
http://dx.doi.org/10.1128/AEM.71.12.7880-7887.2005
[128]  Qian, Z.G., Xia, X.X. and Lee, S.Y. (2009) Metabolic Engineering of Escherichia coli for the Production of Putrescine: A Four Carbon Diamine. Biotechnology and Bioengineering, 104, 651-662.
http://dx.doi.org/10.1002/bit.22502
[129]  Bechthold, I., Bretz, K., Kabasci, S., Kopitzky, R. and Springer, A. (2008) Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources. Chemical Engineering and Technology, 31, 647-654.
http://dx.doi.org/10.1002/ceat.200800063
[130]  Xu, J. and Guo, B.H. (2010) Poly(Butylene Succinate) and Its Copolymers: Research, Development and Industrialization. Biotechnology Journal, 5, 1149-1163.
http://dx.doi.org/10.1002/biot.201000136
[131]  Wang, X., Zou, J. and Li, L. (2007) Multiple Melting Behavior of Poly(Butylene Succinate). European Polymer Journal, 43, 3161-3170.
http://dx.doi.org/10.1016/j.eurpolymj.2007.05.013
[132]  Xu, Y., Xu, J., Gou, B. and Xie, X. (2007) Crystallization Kinetics and Morphology of Biodegradable Poly(Butylene Succinate-Co-Propylene Succinate)s. Journal of Polymer Science Part B: Polymer Physics, 45, 420-428.
http://dx.doi.org/10.1002/polb.20877
[133]  Jovanovic, D., Nikolic, M.S. and Djonlagic, J. (2004) Synthesis and Characterisation of Biodegradable Aliphatic Copolyesters with Hydrophilic Soft Segments. Journal of the Serbian Chemical Society, 69, 1013-1028.
http://dx.doi.org/10.2298/JSC0412013J
[134]  Pepic, D., Zagar, E., Zigon, M., Krzan, A., Kunaver, M. and Djonlagic, J. (2008) Synthesis and Characterization of Biodegradable Aliphatic Copolyesters with Poly(Ethylene Oxide) Soft Segments. European Polymer Journal, 44, 904-917.
http://dx.doi.org/10.1016/j.eurpolymj.2007.11.035
[135]  Ahn, B.D., Kim, S.H., Kim, Y.H. and Yang, J.S. (2001) Synthesis and Characterization of the Biodegradable Copolymers from Succinic Acid and Adipic Acid with 1,4-Butanediol. Journal of Applied Polymer Science, 82, 2808-2826.
http://dx.doi.org/10.1002/app.2135
[136]  Velmathi, S., Nagahata, R., Sujiyama, J. and Takeuchi, K. (2005) A Rapid Eco-Friendly Synthesis of Poly(Butylene Succinate) by a Direct Polyesterification under Microwave Irradiation. Macromolecular Rapid Communications, 26, 1163-1167.
http://dx.doi.org/10.1002/marc.200500176
[137]  Zhu, C.Y., Zhang, Z.G., Liu, Q.P., Wang, Z.P. and Jin, J. (2003) Synthesis and Biodegradation of Aliphatic Polyesters from Dicarboxylic Acids and Diols. Journal of Applied Polymer Science, 90, 982-990.
http://dx.doi.org/10.1002/app.12722
[138]  Bikiaris, D.N., Papageorgiou, G.Z. and Achilias, D.S. (2006) Synthesis and Comparative Biodegradability Studies of Three Poly(Alkylene Succinates). Polymer Degradation and Stability, 91, 31-43.
http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.030
[139]  Kim, M.N., Kim, K.H., Jin, H.J., Park, J.K. and Yoon, J.S. (2001) Biodegradability of Ethyl and N-Octyl Branched Poly(Ethylene Adipate) and Poly(Butylene Succinate). European Polymer Journal, 37, 1843-1847.
http://dx.doi.org/10.1016/S0014-3057(01)00003-9
[140]  Jin, H.J., Lee, B.Y., Kim, M.N. and Yoon, J.S. (2000) Thermal and Mechanical Properties of Mandelic Acid-Copolymerized Poly(Butylene Succinate) and Poly(Ethylene Adipate). Journal of Polymer Science Part B: Polymer Physics, 38, 1504-1511.
http://dx.doi.org/10.1002/(SICI)1099-0488(20000601)38:11<1504::AID-POLB100>3.0.CO;2-4
[141]  Abe, H. and Dui, Y. (2004) Novel Biodegradable Copolymers with a Periodic Sequence Structure Derived from Succinate Butane-1,4-Diol, and Butane-1,4-Diamine. Macromolar Rapid Communications, 25, 1303-1308.
http://dx.doi.org/10.1002/marc.200400154
[142]  Jiang, X., Meng, X. and Xian, M. (2009) Biosynthetic Pathways for 3-Hydroxypropionic Acid Production. Applied Microbiology and Biotechnology, 82, 995-1003.
http://dx.doi.org/10.1007/s00253-009-1898-7
[143]  Gao, H.J., Wu, Q. and Chen, G.Q. (2002) Enhanced Production of D-(-)-3-Hydroxybutyric Acid by Recombinant Escherichia coli. FEMS Microbiology Letters, 213, 59-65.
http://dx.doi.org/10.1016/s0378-1097(02)00788-7
[144]  Tseng, H.C., Martin, C.H., Nielsen, D.R. and Prather, K.L. (2009) Metabolic Engineering of Escherichia coli for Enhanced Production of (R)- and (S)-3-Hydroxybutyrate. Applied and Environmental Microbiology, 75, 3137-3145.
http://dx.doi.org/10.1128/AEM.02667-08
[145]  Tseng, H.C., Harwell, C.L., Martin, C.H. and Prather, K.L. (2010) Biosynthesis of Chiral 3-Hydroxyvalerate from Single Propionate-Unrelated Carbon Sources in Metabolically Engineered E. coli. Microbial Cell Factories, 9, 96-118.
http://dx.doi.org/10.1186/1475-2859-9-96
[146]  Nagarajan, V. and Nakamura, C. E. (1998) Production of 1,3-Propanediol from Glycerol by Recombinant Bacteria Expressing Recombinant Diol Dehydratase. US Patent No. 5821092.
[147]  Nakamura, C.E. and Gatenby, A.A. (1998) Method for the Production of 1,3-Propanediol by Recombinant Microorganisms. US Patent No. 6013494.
[148]  Kelsey, D.R. (1998) Copolyester Composition. US Patent No. 5705575.
[149]  DuPont Performance Polymers (2013).
http://www2.dupont.com/Plastics/en_US/assets/downloads/news/PP-EU-2013-09_The_Science_Behind_ENGLISH.pdf
[150]  Holladay, J.E., White, J.F., Bozell, J.J. and Johnson, D. (2007) Top Value-Added Chemicals from Biomass, Vol. II—Results of Screening for Potential Candidates from Biorefinery Lignin. U.S. Department of Energy, Washington DC.
http://dx.doi.org/10.2172/921839
[151]  Bozell, J.J. and Petersen, G.R. (2010) Technology Development for the Production of Biobased Products from Biorefinery Carbohydrates—The US Department of Energy’s “Top 10” Revisited. Green Chemistry, 12, 539-554.
http://dx.doi.org/10.1039/b922014c
[152]  Marshall, A.L. and Alaimo, P.J. (2010) Useful Products from Complex Starting Materials: Common Chemicals from Biomass Feedstocks. Chemistry—A European Journal, 16, 4970-4980.
http://dx.doi.org/10.1002/chem.200903028
[153]  Belgacem, M.N. and Gandini, A. (2008) Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam.
[154]  Gandini, A. (2011) The Irruption of Polymers from Renewable Resources on the Scene of Macromolecular Science and Technology. Green Chemistry, 13, 1061-1083.
http://dx.doi.org/10.1039/c0gc00789g
[155]  Gandini, A. (2010) Furans as Offspring of Sugars and Polysaccharides and Progenitors of a Family of Remarkable Polymers: A Review of Recent Progress. Polymer Chemistry, 1, 245-251.
http://dx.doi.org/10.1039/B9PY00233B
[156]  Gandini, A., Silvestre, A.J.D., Neto, C.P. and Sousa, A.F. (2009) The Furan Counterpart of Poly(Ethylene Terephthalate): An Alternative Material Based on Renewable Resources. Journal of Polymer Science Part A: Polymer Chemistry, 47, 295-298.
http://dx.doi.org/10.1002/pola.23130
[157]  Gandini, A., Coelho, D., Gomes, M., Reis, B. and Silvestre, A. (2009) Materials from Renewable Resources Based on Furan Monomers and Furan Chemistry: Work in Progress. Journal of Materials Chemistry, 19, 8656-8664.
http://dx.doi.org/10.1039/b909377j
[158]  Gomes, M., Gandini, A., Silvestre, A.J.D. and Reis, B. (2011) Ring-Opening Synthesis of Polyethylene Furanoate (PEF) as a Renewable Resource-Based Substitute for Polyethylene Terephthalate (PET). Journal of Polymer Science Part A: Polymer Chemistry, 49, 3759-3768.
http://dx.doi.org/10.1002/pola.24812
[159]  Ma, J., Pang, Y., Wang, M., Xu, J., Ma, H. and Nie, X. (2012) The Copolymerization Reactivity of Diols with 2,5-Furandicarboxylic Acid for Furan-Based Copolyester Materials. Journal of Materials Chemistry, 22, 3457-3461.
http://dx.doi.org/10.1039/c2jm15457a
[160]  Sousa, A.F., Matos, M., Freire, C.S.R., Silvestre, A.J.D. and Coelho, J.F.J. (2013) New Copolyesters Derived from Terephthalic and 2,5-Furandicarboxylic Acids: A Step forward in the Development of Biobased Polyesters. Polymer, 54, 513-519.
http://dx.doi.org/10.1016/j.polymer.2012.11.081
[161]  Pan, T., Deng, J., Xu, Q., Zuo, Y., Guo, Q.X. and Fu, Y. (2013) Catalytic Conversion of Furfural into a 2,5-Furandicarboxylic Acid-Based Polyester with Total Carbon Utilization. ChemSusChem, 6, 47-50.
http://dx.doi.org/10.1002/cssc.201200652
[162]  Papageorgiou, G.Z., Guigo, N., Tsanaktsis, V., Papageorgiou, D.G., Exarhopoulos, S., Sbirrazzuoli, N. and Bikiaris, D.N. (2015) On the Bio-Based Furanic Polyesters: Synthesis and Thermal Behavior Study of Poly(Octylene Furanoate) Using Fast and Temperature Modulated Scanning Calorimetry. European Polymer Journal, 68, 115-127.
http://dx.doi.org/10.1016/j.eurpolymj.2015.04.011
[163]  Wu, L., Mincheva, R., Xu, Y., Raquez, J.M. and Dubois, P. (2012) High Molecular Weight Poly(Butylene Succinate-Co-Butylenefurandicarboxylate) Copolyesters: From Catalyzed Polycondensation Reaction to Thermomechanical Properties. Biomacromolecules, 13, 2973-2981.
http://dx.doi.org/10.1021/bm301044f
[164]  Mialon, L., Pemba, A.G. and Miller, S.A. (2010) Biorenewable Polyethylene Terephthalate Mimics Derived from Lignin and Acetic Acid. Green Chemistry, 12, 1704-1706.
http://dx.doi.org/10.1039/c0gc00150c
[165]  Miller, S.A. and Mialon, L. (2013) Poly(Dihydroferulic Acid) a Biorenewable Polyethylene Terephthalate Mimic Derived from Lignin and Acetic Acid and Copolymers Thereof. US Patent No. 2013/0137847 A1.
[166]  Mialon, L., Vanderhenst, R., Pemba, A.G. and Miller, S.A. (2011) Polyalkylenehydroxybenzoates (PAHBS): Biorenewable Aromatic/Aliphatic Polyesters from Lignin. Macromolar Rapid Communications, 32, 1386-1392.
http://dx.doi.org/10.1002/marc.201100242
[167]  Firdaus, M. and Meier, M.A.R. (2013) Renewable Co-Polymers Derived from Vanillin and Fatty Acid Derivatives. European Polymer Journal, 49, 156-166.
http://dx.doi.org/10.1016/j.eurpolymj.2012.10.017
[168]  Dong, W., Li, H., Chen, M., Ni, Z., Zhao, J., Yang, H. and Gijsman, P. (2011) Biodegradable Bio-Based Polyesters with Controllable Photo-Crosslinkability, Thermal and Hydrolytic Stability. Journal of Polymer Research, 18, 1239-1247.
http://dx.doi.org/10.1007/s10965-010-9526-x
[169]  Dong, W., Ren, J., Lin, L., Shi, D., Ni, Z. and Chen, M. (2012) Novel Photocrosslinkable and Biodegradable Polyester from Bio-Renewable Resource. Polymer Degradation and Stability, 97, 578-583.
http://dx.doi.org/10.1016/j.polymdegradstab.2012.01.008
[170]  Kuciel, S., Kuzniar, P. and Liber-Knec, A. (2012) Polyamides from Renewable Sources as Matrices of Short Fiber Reinforced Biocomposites. Polimery, 57, 627-634.
http://dx.doi.org/10.14314/polimery.2012.627
[171]  Matadi, R., Hablot, E., Wanga, K., Bahlouli, N., Ahzi, S. and Averous, L. (2011) High Strain Rate Behaviour of Renewable Biocomposites Based on Dimer Fatty Acid Polyamides and Cellulose Fibres. Composites Science and Technology, 71, 674-682.
http://dx.doi.org/10.1016/j.compscitech.2011.01.010
[172]  Hablot, E., Matadi, R., Ahzi, S. and Averous, L. (2010) Renewable Biocomposites of Dimer Fatty Acid-Based Polyamides with Cellulose Fibres: Thermal, Physical and Mechanical Properties. Composites Science and Technology, 70, 504-509.
http://dx.doi.org/10.1016/j.compscitech.2009.12.001
[173]  Ranganathan, S., Kumar, R. and Maniktala, V. (1984) On the Mechanism and Synthetic Applications of the Thermal and Alkaline Degradation of C-18 Castor Oil. Tetrahedron, 40, 1167-1178.
http://dx.doi.org/10.1016/S0040-4020(01)99322-6
[174]  Lu, W., Ness, J.E., Xie, W., Zhang, X., Minshull, J. and Gross, R.A. (2010) Biosynthesis of Monomers for Plastics from Renewable Oils. Journal of American Chemical Society, 132, 15451-15455.
http://dx.doi.org/10.1021/ja107707v
[175]  Guillaume, L., Jouanneau, J. and Briffaudd, T. (2011) Polyamides, Composition Comprising such a Polyamide and their Uses. US Patent No. 20110189419 A1.
[176]  Kind, S. and Wittmann, C. (2011) Bio-Based Production of the Platform Chemical 1,5-Diaminopentane. Applied Microbiology and Biotechnology, 91, 1287-1296.
http://dx.doi.org/10.1007/s00253-011-3457-2
[177]  Qian, Z.G., Xia, X.X. and Lee, S.Y. (2011) Metabolic Engineering of Escherichia coli for the Production of Cadaverine: A Five Carbon Diamine. Biotechnology and Bioengineering, 108, 93-103.
http://dx.doi.org/10.1002/bit.22918
[178]  Yamano, N., Kawaski, N., Nakayama, A., Yamamoto, N. and Aiba, S. (2005) Mechanism and Characterization of Polyamide 4 Degradation by Pseudomonas sp. Journal of Polymers and the Environment, 16, 141-146.
http://dx.doi.org/10.1007/s10924-008-0090-y
[179]  Winkler, M., SteinbiB, M. and Meier, M.A.R. (2014) A More Sustainable Wohl-Ziegler Bromination: Versatile Derivatization of Unsaturated Fames and Synthesis of Renewable Polyamides. European Journal of Lipid Science and Technology, 116, 44-51.
http://dx.doi.org/10.1002/ejlt.201300126
[180]  Trefzer, A.C. and Turk, S.C.H.J. (2012) Method for Preparing Alfa-Ketopimelic Acid by C1-Elongation. WO Patent No. 2012/031910 A2.
[181]  Raemakers-Franken, P.C., Nossin, P.M.M., Brandts, P.M., Wubbolts, M.G., Peeters, W.P.H., Ernste, S., Wildeman De, S.M.A. and Schuermann, M. (2009) Biochemical Synthesis of 6-Amino Caproic Acid. US Patent No. 2009/0137759 A1.
[182]  Buijs, W., Wolkers, H.F.W., Guit, R.P.M. and Agterberg, F.P.W. (2001) Process to Prepare-Caprolactam. US Patent No. 6.194.572 B1.
[183]  Qi, W.W. Vannelli, T., Breinig, S., Ben-Bassat, A., Gatenby, A.A., Haynie, S.L. and Sariaslani, F.S. (2007) Functional Expression of Prokaryotic and Eukaryotic Genes in Escherichia coli for Conversion of Glucose to p-Hydroxystyrene. Metabolic Engineering, 9, 268-276.
http://dx.doi.org/10.1016/j.ymben.2007.01.002
[184]  McKenna, R. and Nielsen, D.R. (2011) Styrene Biosynthesis from Glucose by Engineered E. coli. Metabolic Engineering, 13, 544-554.
http://dx.doi.org/10.1016/j.ymben.2011.06.005
[185]  Li, H. and Huneault, M.A. (2011) Comparison of Sorbitol and Glycerol as Plasticizers for Thermoplastic Starch in TPS/PLA Blends. Journal of Applied Polymer Science, 119, 2439-2448.
http://dx.doi.org/10.1002/app.32956
[186]  Wilpiszewska, K. and Spychaj, T. (2011) Ionic Liquids: Media for Starch Dissolution, Plasticization and Modification. Carbohydrate Polymers, 86, 424-428.
http://dx.doi.org/10.1016/j.carbpol.2011.06.001
[187]  Liu, H. and Zhang J., (2011) Research Progress in Toughening Modification of Poly(Lactic Acid). Journal of Polymer Science Part B: Polymer Physics, 49, 1051-1083.
http://dx.doi.org/10.1002/polb.22283
[188]  Labrecque, L.V., Kumar, R.A., Davé, V., Gross, R.A. and McCarthy, S.P. (1997) Citrate Esters as Plasticizers for Poly(Lactic Acid). Journal of Applied Polymer Science, 6, 1507-1513.
http://dx.doi.org/10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0
[189]  Hassouna, F., Raquez, F., Addiego, J.M., Toniazzo, V., Dubois, P. and Ruch, D. (2012) New Development on Plasticized Poly(Lactide): Chemical Grafting of Citrate on PLA by Reactive Extrusion. European Polymer Journal, 48, 404-415.
http://dx.doi.org/10.1016/j.eurpolymj.2011.12.001
[190]  Jacobsen, S. and Fritz, H.G. (1999) Plasticizing Polylactide—The Effect of Different Plasticizers on the Mechanical Properties. Polymer Engineering Science, 39, 1303-1310.
http://dx.doi.org/10.1002/pen.11517
[191]  Jacobsen, S. and Fritz, H.G. (1996) Filling of Poly(Lactic Acid) with Native Starch. Polymer Engineering Science, 36, 2799-2804.
http://dx.doi.org/10.1002/pen.10680
[192]  Hassouna, F., Raquez, J.M., Addiego, F., Dubois, P., Toniazzo, V. and Ruch, D. (2011) New Approach on the Development of Plasticized Polylactide (PLA): Grafting of Poly(Ethylene Glycol) (PEG) via Reactive Extrusion. European Polymer Journal, 47, 2134-2344.
http://dx.doi.org/10.1016/j.eurpolymj.2011.08.001
[193]  Martin, O. and Avérous, L. (2001) Poly(Lactic Acid): Plasticization and Properties of Biodegradable Multiphase Systems. Polymer, 42, 6209-6219.
http://dx.doi.org/10.1016/S0032-3861(01)00086-6
[194]  Bibers, I., Tupureina, V., Dzene, A. and Kalnins, M. (1999) Improvement of the Deformative Characteristics of Poly-B-Hydroxybutyrate by Plasticization. Mechanics of Composite Materials, 35, 357-364.
http://dx.doi.org/10.1007/BF02259726
[195]  Ceccorulli, G., Pizzoli, M. and Scandola, M. (1992) Plasticization of Bacterial Poly(3-Hydroxybutyrate). Macromolecules, 25, 3304-3306.
http://dx.doi.org/10.1021/ma00038a045
[196]  Sudesh, K., Abe, H. and Doi, Y. (2000) Synthesis, Structure and Properties of Polyhydroxyalkanoates: Biological Polyesters. Progress in Polymer Science, 25, 1503-1555.
http://dx.doi.org/10.1016/S0079-6700(00)00035-6
[197]  Pellegrini, C. and Tomka, I. (1998) Starch Alkanoates as Models for Thermoplastic Polysaccharides. Macromolecular Symposia, 127, 31-35.
http://dx.doi.org/10.1002/masy.19981270107
[198]  Wang, H., Sun, X.Z. and Seib, P. (2002) Mechanical Properties of Poly(Lactic Acid) and Wheat Starch Blends with Methylenediphenyl Diisocyanate. Journal of Applied Polymer Science, 84, 1257-1262.
http://dx.doi.org/10.1002/app.10457
[199]  Zhang, J.F. and Sun, X.Z. (2004) Mechanical Properties of Poly(Lactic Acid)/Starch Composites Compatibilized by Maleic Anhydride. Biomacromolecules, 5, 1446-1451.
http://dx.doi.org/10.1021/bm0400022
[200]  Kim, S.H., Chin, I.J., Yoon, J.S., Kim, S.H. and Jung, J.S. (1998) Mechanical Properties of Biodegradable Blends of Poly(L-Lactic Acid) and Starch. Korea Polymer Journal, 6, 422-427.
[201]  Park, J.W., Lee, D.J., Yoo, E., Im, S.S., Kim, S.H. and Kim, Y.H. (1999) Biodegradable Polymer Blends of Poly(Lactic Acid) and Starch. Korea Polymer Journal, 7, 93-101.
[202]  Park, J.W. and Im, S.S. (2000) Biodegradable Polymer Blends of Poly(L-Lactic Acid) and Gelatinized Starch. Polymer Engineering Science, 40, 2539-2550.
http://dx.doi.org/10.1002/pen.11384
[203]  Koenig, M.F. and Huang, S.T. (1995) Biodegradable Blends and Composites of Polycaprolactone and Starch Derivatives. Polymer, 36, 1877-1882.
http://dx.doi.org/10.1016/0032-3861(95)90934-T
[204]  Averous, L., Moro, L., Dole, P. and Fringant, C. (2000) Properties of Thermoplastic Blends: Starch-Polycaprolactone. Polymer, 41, 4157-4167.
http://dx.doi.org/10.1016/S0032-3861(99)00636-9
[205]  Mani, R. and Bhattacharya, M. (2001) Properties of Injection Moulded Blends of Starch and Modified Biodegradable Polyesters. European Polymer Journal, 37, 515-526.
http://dx.doi.org/10.1016/S0014-3057(00)00155-5
[206]  Bastioli, C., Cerutti, A., Guanella, I., Romano, G.C. and Tosin, M. (1995) Physical State and Biodegradation Behavior of Starch-Polycaprolactone Systems. Journal of Environmental Polymer Degradation, 3, 81-95.
http://dx.doi.org/10.1007/BF02067484
[207]  Mani, R., Tang, J. and Bhattacharya, M. (1998) Synthesis and Characterization of Starch-Graft-Polycaprolactone as Compatibilizer for Starch/Polycaprolactone Blends. Macromolecular Rapid Communications, 19, 283-286.
http://dx.doi.org/10.1002/(SICI)1521-3927(19980601)19:6<283::AID-MARC283>3.3.CO;2-3
[208]  Choi, E.J., Kim, C.H. and Park, J.K. (1999) Structure-Property Relationship in PCL/Starch Blend Compatibilized with Starch-g-PCL Copolymer. Journal of Polymer Science Part B: Polymer Physics, 37, 2430-2438.
http://dx.doi.org/10.1002/(SICI)1099-0488(19990901)37:17<2430::AID-POLB14>3.0.CO;2-4
[209]  Avella, M., Errico, M.E., Rimedio, R. and Sadocco, P. (2001) Preparation of Biodegradable Polyesters/High Amylose Starch Composites by Reactive Blending and Their Characterization. Journal of Applied Polymer Science, 83, 1432-1442.
http://dx.doi.org/10.1002/app.2304
[210]  Cai, H.Y., Yu, J. and Qiu, Z.B. (2012) Miscibility and Crystallization of Biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate)/Poly(Vinyl Phenol) Blends. Polymer Engineering Science, 52, 233-241.
http://dx.doi.org/10.1002/pen.22069
[211]  Yang, J., Liu, M.K., Zhang, B., Chen, X.C., Fu, R.W. and Zhang, M.Q. (2011) Intrinsic Fluorescence Studies of Compatibility in Thermoplastic Phenol Formaldehyde Resin/Poly(ε-Caprolactone) Blends. Express Polymer Letters, 5, 698-707.
http://dx.doi.org/10.3144/expresspolymlett.2011.68
[212]  Furukawa, T., Sato, H., Murakami, R., Zhang, J.M., Noda, I., Ochiai, S. and Ozaki, Y. (2007) Comparison of Miscibility and Structure of Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate)/Poly(L-Lactic Acid) Blends with Those of Poly(3hydroxybutyrate)/Poly(L-Lactic Acid) Blends Studied by Wide Angle X-Ray Diffraction, Differential Scanning Calorimetry, and FTIR Microspectroscopy. Polymer, 48, 1749-1755.
http://dx.doi.org/10.1016/j.polymer.2007.01.020
[213]  Wasantha, L.M., Gunaratne, K. and Shanks, R.A. (2008) Miscibility, Melting, and Crystallization Behavior of Poly(Hydroxybutyrate) and Poly(D,L-Lactic Acid) Blends. Polymer Engineering & Science, 48, 1683-1692.
http://dx.doi.org/10.1002/pen.21051
[214]  Park, J.W. and Im, S.S. (2002) Phase Behavior and Morphology in Blends of Poly(L-Lactic Acid) and Poly(Butylene Succinate). Journal of Applied Polymer Science, 86, 647-655.
http://dx.doi.org/10.1002/app.10923
[215]  Hinuber, C., Hausler, L., Vogel, R., Brunig, H., Heinrich, G. and Werner, C. (2011) Hollow Fibers Made from a Poly(3-Hydroxybutyrate)/Poly-ε-Caprolactone Blend. Express Polymer Letters, 5, 643-652.
http://dx.doi.org/10.3144/expresspolymlett.2011.62
[216]  Sungsanit, K., Kao, N. and Bhattacharaya, S.N. (2011) Properties of Linear Poly(Lactic Acid)/Polyethylene Glycol Blends. Polymer Engineering & Science, 52, 108-116.
http://dx.doi.org/10.1002/pen.22052
[217]  Lovera, D., Marquez, L., Balsamo, V., Taddei, A., Castelli, C. and Muller, A.J. (2007) Crystallization, Morphology, and Enzymatic Degradation of Polyhydroxybutyrate/Polycaprolactone (PHB/PCL) Blends. Macromolecular Chemistry and Physics, 208, 924-937.
http://dx.doi.org/10.1002/macp.200700011
[218]  Suttiwijitpukdee, N., Sato, H., Unger, M. and Ozaki, Y. (2012) Effects of Hydrogen Bond Intermolecular Interactions on the Crystal Spherulite of Poly(3-Hydroxybutyrate) and Cellulose Acetate Butyrate Blends: Studied by FT-IR and FT-NIR Imaging Spectroscopy. Macromolecules, 45, 2738-2248.
http://dx.doi.org/10.1021/ma201598s
[219]  Zhang, K.Y., Ran, X.H., Wang, X.M., Han, C.Y., Han, L.J., Wen, X., Zhuang, Y.G. and Dong, L.S. (2011) Improvement in Toughness and Crystallization of Poly(L-Lactic Acid) by Melt Blending with Poly(Epichlorohydrin-Co-Ethylene Oxide). Polymer Engineering & Science, 51, 2370-2380.
http://dx.doi.org/10.1002/pen.22009
[220]  Jiao, J., Wang, S.J., Xiao, M., Xu, M. and Meng, Y.Z. (2007) Processability, Property, and Morphology of Biodegradable Blends of Poly(Propylene Carbonate) and Poly(Ethylene-Co-Vinyl Alcohol). Polymer Engineering & Science, 47, 174-180.
http://dx.doi.org/10.1002/pen.20694
[221]  Cao, Y.X., Du, F.G., Wang, X.L. and Meng, Y.Z. (2006) New Biodegradable Blends from Aliphatic Polycarbonate and Poly(Vinyl Alcohol). Polymer Composites, 14, 577-584.
[222]  Silva, S.S., Goodfellow, B.J., Benesch, J., Rocha, J., Mano, J.F. and Reis, R.L. (2007) Morphology and Miscibility of Chitosan/Soy Protein Blended Membranes. Carbohydrate Polymers, 70, 25-31.
http://dx.doi.org/10.1016/j.carbpol.2007.02.023
[223]  Li, L.H., Ding, S. and Zhou, C.R. (2004) Preparation and Degradation of PLA/Chitosan Composite Materials. Journal of Applied Polymer Science, 91, 274-277.
http://dx.doi.org/10.1002/app.12954
[224]  Coffin, D.R. and Fishman, M.L. (1997) Films fabricated from Mixtures of Pectin and Poly (Vinyl Alcohol). U.S. Patent No. 5,646,206.
[225]  Fishman, M.L., Coffin, D.R., Onwulata, C.I. and Willett, J.L. (2006) Two Stage Extrusion of Plasticized Pectin/Poly(Vinyl Alcohol) Blends. Carbohydrate Polymers, 65, 421-429.
http://dx.doi.org/10.1016/j.carbpol.2006.01.032
[226]  Nishio, Y. and Manley, R.St.J. (1988) Cellulose/Poly(Vinyl Alcohol) Blends Prepared from Solution in N,N-Dimethylacetamide Lithium Chloride. Macromolecules, 21, 1270-1277.
http://dx.doi.org/10.1021/ma00183a016
[227]  Masson, J.F. and Manley, R.St.J. (1992) Solid-State NMR of Some Cellulose/Synthetic Polymer Blends. Macromolecules, 25, 589-592.
http://dx.doi.org/10.1021/ma00028a016
[228]  Kim, B.S., Baez, C.E. and Atala, A. (2000) Biomaterials for Tissue Engineering. World Journal of Urology, 18, 2-9.
http://dx.doi.org/10.1007/s003450050002
[229]  Sahoo, S., Sasmal, A., Sahoo, D. and Nayak, P. (2010) Synthesis and Characterization of Chitosan-Polycaprolactone Blended with Organoclay for Control Release of Doxycycline. Journal of Applied Polymer Science, 118, 3167-3175.
http://dx.doi.org/10.1002/app.32474
[230]  Liu, X., Lin, T., Gao, Y., Xu, Z.G., Huang, C., Yao, G., Jiang, L.L., Tang, Y.W. and Wang, X.G. (2012) Antimicrobial Electrospun Nanofibers of Cellulose Acetate and Polyester Urethane Composite for Wound Dressing. Journal of Biomedical Materials Research, 100B, 1556-1565.
http://dx.doi.org/10.1002/jbm.b.32724
[231]  Mano, J.F., Silva, G.A., Azevedo, H.S., Malafaya, P.B., Sousa, R.A., Silva, S.S., Boesel, L.F., Oliveira, J.M., Santos, T.C., Marques, A.P., Neves, N.M. and Reis, R.L. (2007) Natural Origin Biodegradable Systems in Tissue Engineering And Regenerative Medicine: Present Status and Some Moving Trends. Journal of the Royal Society Interface, 4, 999-1030.
http://dx.doi.org/10.1098/rsif.2007.0220
[232]  Wei, G.B. and Ma P.X., (2009) Partially Nanofibrous Architecture of 3D Tissue Engineering Scaffolds. Biomaterials, 30, 6426-6434.
http://dx.doi.org/10.1016/j.biomaterials.2009.08.012
[233]  Ginty, P.J., Barry, J.J.A., White, L.J., Howdle, S.M. and Shakesheff, K.M. (2008) Controlling Protein Release from Scaffolds Using Polymer Blends and Composites. European Journal of Pharmaceutics Biopharmaceutics, 68, 82-89.
http://dx.doi.org/10.1016/j.ejpb.2007.05.023
[234]  Tiyaboonchai, W., Chomchalao, P., Pongcharoen, S., Sutheerawattananonda, M. and Sobhon, P. (2011) Preparation and Characterization of Blended Bombyx Mori Silk Fibroin Scaffolds. Fibers and Polymers, 12, 324-333.
http://dx.doi.org/10.1007/s12221-011-0324-9
[235]  Rezwan, K., Chen, Q.Z., Blaker, J.J. and Boccaccini, A.R. (2006) Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering. Biomaterials, 27, 3413-3431.
http://dx.doi.org/10.1016/j.biomaterials.2006.01.039
[236]  Armentano, I., Dottori, M., Fortunati, E., Mattioli, S. and Kenny, J.M. (2010) Biodegradable Polymer Matrix Nanocomposites for Tissue Engineering: A Review. Polymer Degradation and Stability, 95, 2126-2146.
http://dx.doi.org/10.1016/j.polymdegradstab.2010.06.007
[237]  Lieleg, O. and Ribbeck, K. (2011) Biological Hydrogels as Selective Diffusion Barriers. Trends in Cell Biology, 21, 543-551.
http://dx.doi.org/10.1016/j.tcb.2011.06.002
[238]  Van Vlierberghe, S., Dubruel, P. and Schacht, E. (2011) Biopolymer-Based Hydrogels as Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules, 12, 1387-1408.
http://dx.doi.org/10.1021/bm200083n
[239]  Oh, J.K., Lee, D.I. and Park, J.M. (2009) Biopolymer-Based Microgels/Nanogels for Drug Delivery Applications. Progress in Polymer Science, 34, 1261-1282.
http://dx.doi.org/10.1016/j.progpolymsci.2009.08.001
[240]  Mallika, S.K. (2006) Imaging Viscoelasticity in Hydropolymers and Breast Tissue Ultrasound. Ph.D. Dissertation, University of California, Davis.
[241]  Park, H., Li, X., Jin, C., Park, C., Cho, W. and Ha, C. (2002) Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids. Macromolecular Materials and Engineering, 287, 553-558.
http://dx.doi.org/10.1002/1439-2054(20020801)287:8<553::AID-MAME553>3.0.CO;2-3
[242]  Park, H., W., Lee, C. Park, Cho, W. and Ha, C. (2003) Environmentally Friendly Polymer Hybrids. Part 1 Mechanical, Thermal and Barrier Properties of Thermoplastic Starch/Clay Nanocomposites. Journal of Materials Science, 38, 909-915.
http://dx.doi.org/10.1023/A:1022308705231
[243]  Wilhelm, H.M., Sierakowski, M.R., Souza, G.P. and Wypych, F. (2003) Starch Films Reinforced with Mineral Clay. Carbohydrate Polymers, 52, 101-110.
http://dx.doi.org/10.1016/S0144-8617(02)00239-4
[244]  Huang, M., Yu, J. and Ma, X. (2005) High Mechanical Performance MMT-Urea and Formamide-Plasticized Thermoplastic Cornstarch Biodegradable Nanocomposites. Carbohydrate Polymers, 62, 1-7.
[245]  Pandey, J.K. and Sing, R.P. (2005) Green Nanocomposites from Renewable Resources: Effect of Plasticizer on the Structure and Material Properties of Clay-Filled Starch. Starch, 57, 8-15.
http://dx.doi.org/10.1002/star.200400313
[246]  Chiou, B.S., Wood, D., Yee, E., Imam, S.H., Glenn, G.M. and Orts, W.J. (2007) Extruded Starch-Nanoclay Nanocomposites: Effects of Glycerol and Nanoclay Concentration. Polymer Engineering Science, 47, 1898-1904.
http://dx.doi.org/10.1002/pen.20903
[247]  McGlashan, S.A. and Halley, P.J. (2003) Preparation and Characterization of Biodegradable Starch-Based Nanocomposite Materials. Polymer International, 52, 1767-1773.
http://dx.doi.org/10.1002/pi.1287
[248]  Kalambur, S. and Rizvi, S.S.H. (2005) Biodegradable and Functionally Superior Starch-Polyester Nanocomposites from Reactive Extrusion. Journal of Applied Polymer Science, 96, 1072-1082.
http://dx.doi.org/10.1002/app.21504
[249]  Park, H., Misra, M., Drzal, L.T. and Mohanty, A.K. (2004) Green Nanocomposites from Cellulose Acetate Bioplastic and Clay: Effect of Eco-Friendly Triethyl Citrate Plasticizer. Biomacromolecules. 5, 2281-2288.
http://dx.doi.org/10.1021/bm049690f
[250]  Oksman, K., Mathew, A.P., Bondeson, D. and Kvien, I. (2006) Manufacturing Process of Cellulose Whiskers/Polylactic Acid Nanocomposites. Composites Science and Technology, 66, 2776-2784.
http://dx.doi.org/10.1016/j.compscitech.2006.03.002
[251]  Bondeson, D. and Oksman, K. (2007) Polylactic Acid/Cellulose Whisker Nanocomposites Modified by Polyvinyl Alcohol. Composites: Part A, 38, 2486-2492.
http://dx.doi.org/10.1016/j.compositesa.2007.08.001
[252]  de Menezes, A.J., Siqueira, G., Curvelo, A.A.S. and Dufresne, A. (2009) Extrusion and Characterization of Functionalized Cellulose Whiskers Reinforced Polyethylene Nanocomposites. Polymer, 50, 4552-4563.
http://dx.doi.org/10.1016/j.polymer.2009.07.038
[253]  Mancera Garcia, K.M., Meimaroglou, D., Hoppe, S., Pla, F. and Escobar-Barrios, V.A. (2015) Design and Process Modeling for the Manufacture by Extrusion of Recycled Polyethylene Terephtalate and Low Density Polyethylene Nanocomposites Reinforced with Cellulose Nanocrystals. Proceedings of the 10th European Congress of Chemical Engineering. Nice, 27 September-1 October 2015, 655.
[254]  Bandyopadhyay, S., Chen, R. and Giannelis, E.P. (1999) Biodegradable Organic Inorganic Hybrids Based on Poly(L-Lactic Acid). Polymeric Materials: Science and Engineering, 81, 159-160.
[255]  Maiti, P., Yamada, K., Okamoto, M., Ueda, K. and Okamoto, K. (2002) New Polylactide/ Layered Silicate Nanocomposites Role of Organoclay. Chemistry of Materials, 14, 4654-4661.
http://dx.doi.org/10.1021/cm020391b
[256]  Cabedo, L., Feijoo, J.L., Villanueva, M.P., Lagaron, J.M. and Gimenez, E. (2006) Optimization of Biodegradable Nanocomposites Based on PLA/PCL Blends for Food Packaging Applications. Macromolecular Symposia, 233, 191-197.
http://dx.doi.org/10.1002/masy.200690017
[257]  Rebouillat, S. (2011) The Deformation of Saturated Soft Porous Materials: 1—Addressing the Determination of the Activation Energy for a Global Effective Transfer of Fluid through the Contact Zones during Multimode Shear/Compression. Chemical Engineering Science, 66, 5891-5898.
http://dx.doi.org/10.1016/j.ces.2011.08.008
[258]  Rebouillat, S., Peng, J.C.M., Donnet, J.-B. and Ryu, S.-K. (1998) In: Donnet, J.-B., Wang, T.K., Rebouillat, S., Peng, J.C.M., Eds., Carbon Fibers, 3rd Edition, Marcel Dekker, New York, 463-542.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133