全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Contactless Raman Spectroscopy-Based Monitoring of Physical States of Silyl-Modified Polymers during Cross-Linking

DOI: 10.4236/gsc.2016.64015, PP. 151-166

Keywords: Silyl Modified Polymers, Physical States, Micro Contactless Monitoring, Raman Spectroscopy, Cross-Linking

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cross-linking of silyl-modified polymers occurs at the alkoxysilane groups attached to the ends of polymer chains by hydrolysis and polycondensation mechanisms in the presence of moisture. During these reactions, three different physical states can be identified (viscous, skin effect and cross-linked state). Knowledge of the evolution of these states at each reaction time is essential to determine the open time for the adhe-sive industry and is generally obtained by a manual method. Automation of this moni-toring could avoid operator error and could be used for very long cross linking reac-tions or to screen a large number of catalysts. Thus, a contactless micro process tech-nology was developed to correlate these physical states with an optical technology, Raman spectroscopy, by monitoring the decrease in intensity of the Si-OCH3 groups during chemical reactions. This online characterization method can also be used to compare the efficiencies of several catalysts for the cross-linking of silyl-modified polymers, using a minimum amount of chemical materials.

References

[1]  Maudgal, S. and St. Clair, T.L. (1984) Preparation and Properties of Silane-Endcapped Polyimide Adhesives. International Journal of Adhesion and Adhesives, 4, 129-132.
http://dx.doi.org/10.1016/0143-7496(84)90014-9
[2]  Huang, H.H. and Wilkes, G.L. (1989) Structure-Property Behaviour of Hybrid Materials Incorporating Tetraethoxysilane with Multifunctional Poly(tetramethylene oxide). Polymer, 30, 2001-2012.
http://dx.doi.org/10.1016/0032-3861(89)90286-3
[3]  Liu, P., Song, J., He, L., Liang, X., Ding, H. and Li, Q. (2008) Alkoxysilane Functionalized Polycaprolactone/Polysiloxane Modified Epoxy Resin through Sol-Gel Process. European Polymer Journal, 44, 940-951.
http://dx.doi.org/10.1016/j.eurpolymj.2007.12.014
[4]  Serier, A., Pascault, J.P. and Lam, T.M. (1991) Reactions in Aminosilane-Epoxy Prepolymer Systems. II. Reactions of Alkoxysilane Groups with or without the Presence of Water. Journal of Polymer Science Part A: Polymer Chemistry, 29, 1125-1131.
http://dx.doi.org/10.1002/pola.1991.080290806
[5]  Saikia, D., Wu, C.G., Fang, J., Tsai, L.D. and Kao, H.M. (2014) Organic–Inorganic Hybrid Polymer Electrolytes Based on Polyether Diamine, Alkoxysilane, and Trichlorotriazine: Synthesis, Characterization, and Electrochemical Applications. Journal of Power Sources, 269, 651-660.
http://dx.doi.org/10.1016/j.jpowsour.2014.06.159
[6]  Schmidt, H. and Seiferling, B. (1986) Chemistry and Applications of Inorganic-Organic Polymers (Organically Modified Silicates). Materials Research Society Symposium Proceedings, 73, 739-750.
http://dx.doi.org/10.1557/PROC-73-739
[7]  Alyamac, E., Gu, H., Soucek, M.D., Qiu, S. and Buchheit, R.G. (2012) Alkoxysilane Oligomer Modified Epoxide Primers. Progress in Organic Coatings, 74, 67-81.
http://dx.doi.org/10.1016/j.porgcoat.2011.11.012
[8]  Maleki, H., Duraes, L. and Portugal, A. (2014) An Overview on Silica Aerogels Synthesis and Different Mechanical Reinforcing Strategies. Journal of Non-Crystalline Solids, 385, 55-74.
http://dx.doi.org/10.1016/j.jnoncrysol.2013.10.017
[9]  Alexandre, M. and Dubois, P. (2000) Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Materials Science and Engineering, 28, 1-63.
http://dx.doi.org/10.1016/S0927-796X(00)00012-7
[10]  Surivet, F., Lam, T.M., Pascault, J.P. and Pham, Q.T. (1992) Organic-Inorganic Hybrid Materials. 1. Hydrolysis and Condensation Mechanisms Involved in Alkoxysilane-Terminated Macromonomers. Macromolecules, 25, 4309-4320.
http://dx.doi.org/10.1021/ma00043a011
[11]  Schmidt, H., Scholze, H. and Kaiser, A. (1984) Principles of Hydrolysis and Condensation Reaction of Alkoxysilanes. Journal of Non-Crystalline Solids, 63, 1-11.
http://dx.doi.org/10.1016/0022-3093(84)90381-8
[12]  Paquet, O., Salon, M.-C.B., Zeno, E. and Belgacem, M.N. (2012) Hydrolysis-Condensation Kinetics of 3-(2-Amino-ethylamino)propyl-trimethoxysilane. Materials Science and Engineering C, 32, 487-493.
http://dx.doi.org/10.1016/j.msec.2011.11.022
[13]  Wu, C., Wu, Y., Xu, T. and Yang, W. (2006) Study of Sol-Gel Reaction of Organically Modified Alkoxysilanes. Part I: Investigation of Hydrolysis and Polycondensation of Phenylaminomethyl Triethoxysilane and Tetraethoxysilane. Journal of Non-Crystalline Solids, 352, 5642-5661.
http://dx.doi.org/10.1016/j.jnoncrysol.2006.08.037
[14]  Lippert, J.L., Melpolder, S.B. and Kelts, L.W. (1988) Raman Spectroscopic Determination of the pH Dependence of Intermediates in Sol-Gel Silicate Formation. Journal of Non-Crystalline Solids, 104, 139-147.
http://dx.doi.org/10.1016/0022-3093(88)90193-7
[15]  Artaki, I., Bradley, M., Zerda, T.W. and Jonas, J. (1985) NMR and Raman Study of the Hydrolysis Reaction in Sol-Gel Processes. The Journal of Physical Chemistry A, 89, 4399-4404.
http://dx.doi.org/10.1021/j100266a050
[16]  Rauter, A., Perse, L.S., Orel, B., Bengu, B., Sunetci, O. and Vuk, A.S. (2013) Ex Situ IR and Raman Spectroscopy as a Tool for Studying the Anticorrosion Processes in (3-Glycidoxypropyl)Trimethoxysilane-Based Sol-Gel Coatings. Journal of Electroanalytical Chemistry, 703, 97-107.
http://dx.doi.org/10.1016/j.jelechem.2013.05.015
[17]  Li, Y.-S., Church, J.S., Woodhead, A.L., Vecchio, N.E. and Yang, J. (2014) Infrared and Raman Spectroscopic Studies of Tris-[3-(trimethoxysilyl)propyl] Isocyanurate, Its Sol-Gel Process, and Coating on Aluminum and Copper. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132, 225-231.
http://dx.doi.org/10.1016/j.saa.2014.04.172
[18]  Li, Y.-S., Tran, T., Xu, Y. and Vecchio, N.E. (2006) Spectroscopic Studies of Trimetoxy-propylsilane and Bis(Trimethoxysilyl)Ethane Sol-Gel Coatings on Aluminum and Copper. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 65, 779-786.
http://dx.doi.org/10.1016/j.saa.2005.12.040
[19]  Seifer, G.B. (2002) Cyanuric Acid and Cyanurates. Russian Journal of Coordination Chemistry, 28, 301-324. http://dx.doi.org/10.1023/A:1015531315785
[20]  Li, Y.-S., Vecchio, N.E. and Lu, W. (2013) Infrared and Raman Spectra of (3,3,3-Trifluoro-propyl)Trimethoxysilane, Its Sol and Xerogel. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 105, 213-217.
http://dx.doi.org/10.1016/j.saa.2012.12.022
[21]  Socrates, G. (2001) Infrared and Raman Characteristic Group Frequencies. 3rd Edition, John Wiley & Sons, Hoboken.
[22]  Bennett, M.D., Wolters, C.J., Brandstadt, K.F. and Tecklenburg, M.M.J. (2012) Raman Spectroscopy and DFT Calculations of Intermediates in the Hydrolysis of Methylmethoxysilanes. Journal of Molecular Structure, 1023, 204-211.
http://dx.doi.org/10.1016/j.molstruc.2012.06.008
[23]  Colomban, Ph. (1996) Raman Studies of Inorganic Gels and of Their Sol-to-Gel, Gel-to-Glass and Glass-to-Ceramics Transformation. Journal of Raman Spectroscopy, 27, 747-758.
http://dx.doi.org/10.1002/(SICI)1097-4555(199610)27:10<747::AID-JRS38>3.0.CO;2-E
[24]  Riegel, B., Blittersdorf, S., Kiefer, W., Hofacker, S., Müller, M. and Schottner, G. (1998) Kinetic Investigations of Hydrolysis and Condensation of the Glycidoxypropyltrimethoxysilane/Aminopropyltriethoxy-Silane System by Means of FT-Raman Spectroscopy I. Journal of Non-Crystalline Solids, 226, 76-84.
http://dx.doi.org/10.1016/S0022-3093(97)00487-0
[25]  Riegel, B., Plittersdorf, S., Kiefer, W., Hüsing, H. and Schubert, U. (1997) Raman Spectroscopic Analysis of the Sol-Gel Processing of RSi(OMe)3Si(OMe)4 Mixtures. Journal of Molecular Structure, 410-411, 157-160.
http://dx.doi.org/10.1016/S0022-2860(96)09690-1
[26]  Livage, J., Henry, M. and Sanchez, C. (1988) Sol-Gel Chemistry of Transition Metal Oxides. Progress in Solid State Chemistry, 18, 259-341.
http://dx.doi.org/10.1016/0079-6786(88)90005-2
[27]  Livage, J. and Sanchez, C. (1992) Sol-Gel Chemistry. Journal of Non-Crystalline Solids, 145, 11-19.
http://dx.doi.org/10.1016/S0022-3093(05)80422-3
[28]  Patent of BOSTIK 0165453 A1 (2012).
[29]  Kaddami, H., Surivet, F., Gérard, J.F., Lam, T.M. and Pascault, J.P. (1994) Hybrid Organic-Inorganic Materials Synthesized by Reaction with Alkoxysilanes: Effect of the Acid-to-Al-koxide Ratio on Morphology. Journal of Inorganic and Organometallic Polymers, 4, 183-198.
http://dx.doi.org/10.1007/BF01036542
[30]  Brinker, C.J. and Scherer, G.W. (1985) Sol → Gel → Glass: I. Gelation and Gel Structure. Journal of Non-Crystalline Solids, 70, 301-322.
http://dx.doi.org/10.1016/0022-3093(85)90103-6
[31]  Matsuyama, I., Satoh, S., Katsumoto, M. and Susa, K. (1991) Raman and GC-MS Study of the Initial Stage of the Hydrolysis of Tetramethoxysilane in Acid and Base Catalyzed Sol-Gel Processes. Journal of Non-Crystalline Solids, 135, 22-28.
http://dx.doi.org/10.1016/0022-3093(91)90438-C
[32]  Patent of KANEKA US 8,124,690 B2 (2012).
[33]  Matos, L.C., Ilharco, L.M. and Almeida, R.M. (1992) The Evolution of TEOS to Silica Gel and Glass by Vibrational Spectroscopy. Journal of Non-Crystalline Solids, 147-148, 232-237.
http://dx.doi.org/10.1016/S0022-3093(05)80622-2
[34]  Zhai, Q., Zhou, C., Zhao, S., Peng, C. and Han, Y. (2014) Kinetic Study of Alkoxysilane Hydrolysis under Acidic Conditions by Fourier Transform near Infrared Spectroscopy Combined with Partial Least-Squares Model. Industrial & Engineering Chemistry Research, 53, 13598-13609.
http://dx.doi.org/10.1021/ie5012195
[35]  Granitza, D., Beyermann, M., Wenschuh, H., Haber, H., Carpino, L.A., Truran, G.A. and Bienert, M. (1995) Efficient Acylation of Hydroxy Functions by Means of Fmoc Amino Acid Fluorides. Journal of the Chemical Society, Chemical Communications, No. 21, 2223-2224.
http://dx.doi.org/10.1039/c39950002223
[36]  Perrin, D.D. (1965) Dissociation Constants of Organic Bases in Aqueous Solution. Butterworths, London (Supplement, 1972).
[37]  Schwolow, S., Braun, F., Radle, M., Kockmann, N. and Roder, T. (2015) Fast and Efficient Acquisition of Kinetic Data in Microreactors Using In-Line Raman Analysis. Organic Process Research & Development, 19, 1286-1292.
http://dx.doi.org/10.1021/acs.oprd.5b00184
[38]  Colin, B., Lavastre, O., Fouquay, S., Michaud, G., Simon, F., Laferte, O. and Brusson, J.M. (2016) Development of New High-Throughput Screening Method to Compare and to Detect Efficient Catalysts for Adhesive Materials. International Journal of Adhesion and Adhesives, 68, 47-53.
http://dx.doi.org/10.1016/j.ijadhadh.2016.02.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133