全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Graphene  2016 

Fractography Analysis with Topographical Features of Multi-Layer Graphene Reinforced Epoxy Nanocomposites

DOI: 10.4236/graphene.2016.54014, PP. 166-177

Keywords: Fractography, Multi-Layer Graphene (MLG), Epoxy, Nanocomposites, Mechanical Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

The stiff and fragile structure of thermosetting polymers, such as epoxy, accomplices the innate cracks to cause fracture and therefore the applications of monolithic epoxy are not ubiquitous. However, it is well established that when reinforced especially by nano-fillers, its ability to withstand crack propagation is propitiously improved. The crack is either deflected or bifurcated when interacting with strong nano-filler such as Multi-Layer Graphene (MLG). Due to the deflection and bifurcation of cracks, specific fracture patterns are observed. Although these fracture patterns seem aesthetically appealing, however, if delved deeper, they can further be used to estimate the influence of nano-filler on the mechanical properties. Here we show that, by a meticulous examination of topographical features of fractured patterns, various important aspects related to fillers can be approximated such as dispersion state, interfacial interactions, presence of agglomerates, and overall influence of the incorporation of filler on the mechanical properties of nanocomposites.

References

[1]  Carlson, R.L., Kardomateas, G.A. and Craig, J.I. (2012) Mechanics of Failure Mechanisms in Structures. Springer, Berlin. http://dx.doi.org/10.1007/978-94-007-4252-9
[2]  Miracle, D.B. and Donaldson, S.L., Eds. (2001) ASM Handbook, Vol. 21, Composites. ASM International, Material Park, OH.
[3]  Yao, X.F., Zhou, D. and Yeh, H.Y. (2008) Macro/Microscopic Fracture Characterizations of SiO2/Epoxy Nanocomposites. Aerospace Science and Technology, 12, 223-230.
http://dx.doi.org/10.1016/j.ast.2007.03.005
[4]  Wetzel, B., Rosso, P., Haupert, F. and Friedrich, K. (2006) Epoxy Nanocomposites—Frac- ture and Toughening Mechanisms. Engineering Fracture Mechanics, 73, 2375-2398.
http://dx.doi.org/10.1016/j.engfracmech.2006.05.018
[5]  Naous, W., Yu, X.Y., Zhang, Q.X., Naito, K. and Kagawa, Y. (2006) Morphology, Tensile Properties, and Fracture Toughness of Epoxy/Al2O3 Nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 44, 1466-1473. http://dx.doi.org/10.1002/polb.20800
[6]  Kim, B.C., Park, S.W. and Lee, D.G. (2008) Fracture Toughness of the Nano-Particle Reinforced Epoxy Composite. Composite Structures, 86, 69-77. http://dx.doi.org/10.1016/j.compstruct.2008.03.005
[7]  Wang, K., Chen, L., Wu, J., Toh, M.L., He, C. and Yee, A.F. (2005) Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms. Macromolecules, 38, 788-800. http://dx.doi.org/10.1021/ma048465n
[8]  Liu, W., Hoa, S.V. and Pugh, M. (2005) Fracture Toughness and Water Uptake of High- Performance Epoxy/Nanoclay Nanocomposites. Composites Science and Technology, 65, 2364-2373.
http://dx.doi.org/10.1016/j.compscitech.2005.06.007
[9]  Gojny, F.H., Wichmann, M.H.G., K?pke, U., Fiedler, B. and Schulte, K. (2004) Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content. Composites Science and Technology, 64, 2363-2371.
http://dx.doi.org/10.1016/j.compscitech.2004.04.002
[10]  Yu, N., Zhang, Z.H. and He, S.Y. (2008) Fracture Toughness and Fatigue Life of MWCNT/ Epoxy Composites. Materials Science and Engineering: A, 494, 380-384.
http://dx.doi.org/10.1016/j.msea.2008.04.051
[11]  Srikanth, I., Kumar, S., Kumar, A., Ghosal, P. and Subrahmanyam, C. (2012) Effect of Amino Functionalized MWCNT on the Crosslink Density, Fracture Toughness of Epoxy and Mechanical Properties of carbon-Epoxy Composites. Composites Part A: Applied Science and Manufacturing, 43, 2083-2086. http://dx.doi.org/10.1016/j.compositesa.2012.07.005
[12]  Mathews, M.J. and Swanson, S.R. (2007) Characterization of the Interlaminar Fracture Toughness of a Laminated Carbon/Epoxy Composite. Composites Science and Technology, 67, 1489-1498. http://dx.doi.org/10.1016/j.compscitech.2006.07.035
[13]  Arai, M., Noro, Y., Sugimoto, K. and Endo, M. (2008) Mode I and Mode II Interlaminar Fracture Toughness of CFRP Laminates Toughened by Carbon Nanofiber Interlayer. Composites Science and Technology, 68, 516-525. http://dx.doi.org/10.1016/j.compscitech.2007.06.007
[14]  Wong, D.W.Y., Lin, L., McGrail, P.T., Peijs, T. and Hogg, P.J. (2010) Improved Fracture Toughness of Carbon Fibre/Epoxy Composite Laminates Using Dissolvable Thermoplastic Fibres. Composites Part A: Applied Science and Manufacturing, 41, 759-767.
http://dx.doi.org/10.1016/j.compositesa.2010.02.008
[15]  Atif, R., Shyha, I. and Inam, F. (2016) Modeling and Experimentation of Multi-Layered Nanostructured Graphene-Epoxy Nanocomposites for Enhanced Thermal and Mechanical Properties. Journal of Composite Materials, 1-12. http://dx.doi.org/10.1177/0021998316640060
[16]  Atif, R. and Inam, F. (2016) Modeling and Simulation of Graphene Based Polymer Nanocomposites: Advances in the Last Decade. Graphene, 5, 96-142. http://dx.doi.org/10.4236/graphene.2016.52011
[17]  Pokharel, P., Truong, Q.-T. and Lee, D.S. (2014) Multi-Step Microwave Reduction of Graphite Oxide and Its Use in the Formation of Electrically Conductive Graphene/Epoxy Composites. Composites Part B: Engineering, 64, 187-193. http://dx.doi.org/10.1016/j.compositesb.2014.04.013
[18]  Tian, M., Qu, L., Zhang, X., Zhang, K., Zhu, S., Guo, X., et al. (2014) Enhanced Mechanical and Thermal Properties of Regenerated Cellulose/Graphene Composite Fibers. Carbohydr Polym, 111, 456-462. http://dx.doi.org/10.1016/j.carbpol.2014.05.016
[19]  Xu, Z., Zhang, J., Shan, M., Li, Y., Li, B., Niu, J., et al. (2014) Organosilane-Functionalized Graphene Oxide for Enhanced Antifouling and Mechanical Properties of Polyvinylidene Fluoride Ultrafiltration Membranes. Journal of Membrane Science, 458, 1-13.
http://dx.doi.org/10.1016/j.memsci.2014.01.050
[20]  Bkakri, R., Sayari, A., Shalaan, E., Wageh, S., Al-Ghamdi, A.A. and Bouazizi, A. (2014) Effects of the Graphene Doping Level on the Optical and Electrical Properties of ITO/P3HT, Graphene/Au Organic Solar Cells. Superlattices and Microstructures, 76, 461-471.
http://dx.doi.org/10.1016/j.spmi.2014.10.016
[21]  Lian, Y., He, F., Wang, H. and Tong, F. (2014) A New Aptamer/Graphene Interdigitated Gold Electrode Piezoelectric Sensor for Rapid and Specific Detection of Staphylococcus aureus. Biosensors & Bioelectronics, 65, 314-319. http://dx.doi.org/10.1016/j.bios.2014.10.017
[22]  Abdin, Z., Alim, M.A., Saidur, R., Islam, M.R., Rashmi, W., Mekhilef, S., et al. (2013) Solar Energy Harvesting with the Application of Nanotechnology. Renewable & Sustainable Energy Reviews, 26, 837-852. http://dx.doi.org/10.1016/j.rser.2013.06.023
[23]  Sun, W., Hu, R., Liu, H., Zeng, M., Yang, L., Wang, H., et al. (2014) Embedding Nano-Sil- icon in Graphene Nanosheets by Plasma Assisted Milling for High Capacity Anode Materials in Lithium Ion Batteries. Journal of Power Sources, 268, 610-618.
http://dx.doi.org/10.1016/j.jpowsour.2014.06.039
[24]  Azeez, A.A., Rhee, K.Y., Park, S.J. and Hui, D. (2013) Epoxy Clay Nanocomposites— Processing, Properties and Applications: A Review. Composites Part B: Engineering, 45, 308-320.
http://dx.doi.org/10.1016/j.compositesb.2012.04.012
[25]  Aziz, A., Lim, H.N., Girei, S.H., Yaacob, M.H., Mahdi, M.A., Huang, N.M., et al. (2015) Silver/Graphene Nanocomposite-Modified Optical Fiber Sensor Platform for Ethanol Detection in Water Medium. Sensors & Actuators B: Chemical, 206, 119-125. http://dx.doi.org/10.1016/j.snb.2014.09.035
[26]  Agnihotri, N., Chowdhury, A.D. and De, A. (2015) Non-Enzymatic Electrochemical Detection of Cholesterol Using β-Cyclodextrin Functionalized Graphene. Biosensors & Bioelectronics, 63, 212-217. http://dx.doi.org/10.1016/j.bios.2014.07.037
[27]  Cotell, C.M., Sprague, J.A. and Smidth, F.A.J. (Eds.) (1994) ASM Handbook. Vol. 5, Surface Engineering. ASM International, Russell Township.
[28]  Atif, R., Shyha, I. and Inam, F. (2016) The Degradation of Mechanical Properties Due to Stress Concentration Caused by Retained Acetone in Epoxy Nanocomposites. RSC Advances, 6, 34188-34197. http://dx.doi.org/10.1039/C6RA00739B
[29]  Kuo, W.-S., Tai, N.-H. and Chang, T.-W. (2013) Deformation and Fracture in Graphene Nanosheets. Composites Part A: Applied Science and Manufacturing, 51, 56-61.
http://dx.doi.org/10.1016/j.compositesa.2013.03.020
[30]  Atif, R., Wei, J., Shyha, I. and Inam, F. (2016) Use of Morphological Features of Carbonaceous Materials for Improved Mechanical Properties of Epoxy Nanocomposites. RSC Advances, 6, 1351-1359. http://dx.doi.org/10.1039/C5RA24039E

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133