All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Experimental Investigation of the Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys by Means of Atom Probe Tomography

DOI: 10.4236/ojmetal.2016.62003, PP. 25-44

Keywords: Phase Decomposition, Atom Probe Tomography, Early Stage of Precipitation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aluminum-based alloys play a key role in modern engineering and are widely used in construction components in aircraft, automobiles and other means of transportation due to their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. An improvement of an Al-based alloy has been performed based on the understanding of the relationships among compositions, processing, microstructural characteristics and properties. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu alloys during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Investigation of the fine scale segregation effects of dilute solutes in aluminum alloys which were experienced different heat treatments by using atom probe tomography has been achieved. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160°C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160°C) induces increasing on the number density of the Li clusters and hence increase number of precipitated particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus the results contribute to the understanding of Al-alloy design.

References

[1]  Polmear, I.J. (2006) Light Alloys from Traditional Alloys to Nanocrystals. Elsevier, Amsterdam.
[2]  Totten, G.E. and MacKenzie, D.S. (2003) Physical Metallurgy and Processes. In: Handbook in Aluminum, M. Dekker, New York.
[3]  Hono, K. (1999) Atom Probe Microanalysis and Nanoscale Microstructures in Metallic Materiales. Acta Material, 47, 3172.
http://dx.doi.org/10.1016/S1359-6454(99)00175-5
[4]  Gayle, F.W. and Goodway, M. (1994) Precipitation Hardening in the First Aerospace Aluminum Alloy: The Wright Flyer Crankcase. Science, 266, 1015-1017.
http://dx.doi.org/10.1126/science.266.5187.1015
[5]  Polmear, I.J. (2004) Aluminium Alloys—A Century of Age Hardening. Materials Forum, 28.
[6]  Konno, T.J., Hiraga, K. and Kawasaki, M. (2001) Guinier-Preston (GP) Zone Revisited: Atomic Level Observation by HAADF-TEM Technique. Scripta Materialia, 44, 2303-2307.
http://dx.doi.org/10.1016/S1359-6462(01)00909-5
[7]  Gerold, V. (1988) On the Structures of Guinier-Preston Zones in Al {Single Bond} Cu Alloys Introductory Paper. Scripta Metallurgica, 22, 927-932.
http://dx.doi.org/10.1016/S0036-9748(88)80077-2
[8]  Silcock, J.M. (1956) The Structure in Aluminium-Copper Alloys. Acta Crystallographica, 9, 680.
http://dx.doi.org/10.1107/S0365110X56001820
[9]  Hono, K., Babu, S.S., Hiraga, K., Okano, R. and Sakurai, T. (1992) Atom Probe Study of Early Stage Phase Decomposition in an Al-7.8 at.% Li Alloy. Acta Metallurgica et Materialia, 40, 3027-3034.
http://dx.doi.org/10.1016/0956-7151(92)90466-R
[10]  Noble, B. and Thompson, G.E. (1971) Precipitation Characteristics of Aluminium-Lithium Alloys. Metal Science, 5, 114-120.
http://dx.doi.org/10.1179/030634571790439333
[11]  Baumann, S.F. and Williams, D.B. (1985) Effects of Capillarity and Coherency on δ' (Al3Li) Precipitation in Dilute Al-Li Alloys at Low Undercoolings. Acta Metallurgica, 33, 1069-1078.
http://dx.doi.org/10.1016/0001-6160(85)90200-7
[12]  Khachaturyan, A.G., Lindsey, T.E. and Morris, J.J.W. (1988) Theoretical Investigation of the Precipitation of in AI-Li. Metallurgical Transactions A, 19, 249.
http://dx.doi.org/10.1007/BF02652533
[13]  Schmitz, G., Hono, K. and Haasen, P. (1994) High Resolution Electron Microscopy of the Early Decomposition Stage of Al-Li Alloys. Acta Metallurgica et Materialia, 42, 201-211.
http://dx.doi.org/10.1016/0956-7151(94)90063-9
[14]  Al-Kassab, T., Menand, A., Chambreland, S. and Hassen, P. (1991) The Early Stages of Decomposition of Al-Li Alloys. Surface Science, 266, 333-336.
http://dx.doi.org/10.1016/0039-6028(92)91042-A
[15]  Effenberg, G. and Ilyenko, S. (2007) Al-Cu-Li (Aluminium-Copper-Lithium). In: Non-Ferrous Metal Systems. Part 2, Springer, Berlin Heidelberg, 1-42.
[16]  Hardy, H.K. and Silcock, J.M. (1955-1956) The Phase Sections at 500 and 350°C of Al Rich Al-Cu-Li Alloys. Journal of the Institute of Metals, 84, 423-428.
[17]  Dorward, R.C. (1988) Solidus and Solvus Isotherms for Quaternary Al-Li-Cu-Mg Alloys. Metallurgical Transactions A, 19, 1631-1634.
http://dx.doi.org/10.1007/BF02674041
[18]  Moser, Z., Gasior, W., Onderka, B., Sommer, F. and Kim, Z. (2002) Al-Cu-Li System Electromotive Force and Calorimetric Studies—Phase Diagram Calculations of the Al-Rich Part. Journal of Phase Equilibria, 23, 127-133.
http://dx.doi.org/10.1361/1054971023604134
[19]  Wang, K. and Garoche, P. (1997) Phason-Strain-Field Influences on Low-Temperature Specific Heat in Icosahedral Quasicrystals Al-Li-Cu and Al-Fe-Cu. Physical Review B, 55, 250-258.
http://dx.doi.org/10.1103/PhysRevB.55.250
[20]  Dubost, B., Colinet, C. and Ansara, I. (1989) An Experimental and Thermodynamic Study of the Al-Cu-Li Equilibrium Phase Diagram. 5th International Aluminium-Lithium Conference, Williamsburg, 27-31 March 1989, 28-31.
[21]  Noble, B. and Thompson, G.E. (1972) Precipitation in Aluminium-Copper-Lithium Alloys. Materials Science, 6, 167-174.
[22]  Van Smaalen, S., Meetsma, A., Deboer, J.L. and Bronsveld, P.M. (1990) Refinement of the Crystal Structure of Hexagonal Al2CuLi. Solid State Chemistry, 85, 293-298.
http://dx.doi.org/10.1016/S0022-4596(05)80086-6
[23]  Dlubek, G., Krause, S., Krause, H., Berasina, A.L., Mikhalenkav, V.S. and Chuistov, K.V. (1992) Positron Studies of Precipitation Phenomena in Al-Li and in Al-LI-X (X=Cu, Mg or Sc) Alloys. Journal of physics: Condensed Matter, 4, 6317-6328.
http://dx.doi.org/10.1088/0953-8984/4/29/015
[24]  Hornbogen, E. (2000) Formation of nm-Size Dispersoids from Supersaturated Solid Solutions of Aluminium. Material Science Forum, 331-337, 879-888.
http://dx.doi.org/10.4028/www.scientific.net/MSF.331-337.879
[25]  Hellman, O.C., Du Rivage, J.B. and Seidman, D.N. (2003) Efficient Sampling for Three-Dimensional Atom Probe Microscopy Data. Ultramicroscopy, 95, 199-205.
http://dx.doi.org/10.1016/S0304-3991(02)00317-0
[26]  Vaumousse, D., Cerezo, A. and Warren, P.J. (2003) A Procedure for Quantification of Precipitate Microstructures from Three-Dimensional Atom Probe Data. Ultramicroscopy, 95, 215-221.
http://dx.doi.org/10.1016/S0304-3991(02)00319-4
[27]  Gault, B., Moody, M.P., Cairney, J.M. and Ringer, R. (2012) Atom Probe Microscopy. Springer Series in Materials Science, Springer, New York.
http://dx.doi.org/10.1007/978-1-4614-3436-8
[28]  Moody, M.P., Stephenson, L.T., Geguerra, A.V. and Ringer, S.P. (2008) Quantitative Binomial Distribution Analyses of Nanoscale Like-Solute Atom Clustering and Segregation in Atom Probe Tomography Data. Microscopy Research and Technique, 71, 542-550.
http://dx.doi.org/10.1002/jemt.20582
[29]  ünlü, N., Gable, B.M., Shiflet, G.J. and Starke Jr., E.A. (2003) The Effect of Cold Work on the Precipitation of Ω and θ’ in a Ternary Al-Cu-Mg Alloy. Metallurgical and Materials Transactions A, 34, 2757-2769.
http://dx.doi.org/10.1007/s11661-003-0177-y
[30]  Murch, G.E., Bruff, C.M. and Mehrer, H. (1990) Chemical Diffusion Tables. Part of Landolt-BÖrnstein—Group III Condensed Matter, Springer Materials—The Landolt-BÖrnstein Database, Berlin.
[31]  Silcock, J.M., Heal, T.J. and Hardy, H.K. (1953-1954) Structural Ageing Characteristics of Aluminum-Copper Alloys. Journal of the Institute of Metals, 82, 239-248.
[32]  Boyd, J.D. and Nicholson, R.B.M. (1971) The Coarsening Behaviour of and Precipitates in Two Al-Cu Alloys. Acta Metallurgica, 19, 1379-1391.
http://dx.doi.org/10.1016/0001-6160(71)90076-9
[33]  Ringer, S.P. and Hono, K. (2000) Microstructural Evolution and Age Hardening in Aluminium Alloys: Atom Probe Field-Ion Microscopy and Transmission Electron Microscopy Studies. Materials Characterization, 44, 101-131.
http://dx.doi.org/10.1016/S1044-5803(99)00051-0
[34]  Ceresaraa, S., Giardaa, A. and Sanchéza, A. (1977) Annealing of Vacancies and Ageing in Al-Li Alloys. Philosophical Magazine, 35, 97-110.
http://dx.doi.org/10.1080/14786437708235975
[35]  Kulkarni, G.J., Banerjee, D. and Ramachandran, T.R. (1989) Physical Metallurgy of Aluminum-Lithium Alloys. Bulletin of Materials Science, 12, 325-340.
http://dx.doi.org/10.1007/BF02747140

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133