We present a high quality single-layer graphene (SLG), triple layer graphene (TLG)
and few layer graphene (FLG) sheets have been synthesized on cu substrate (metal
catalyst) by direct current plasma enhanced chemical vapor deposition (DC-PECVD)
at low growth temperature (from 600°C to 750°C). Mixture gas ratio, plasma electrical
current and substrate temperature were investigated to determine the optimum
condition of high quality single-layer graphene sheet synthesized. The characterization
of graphene sheet was performed by X-ray diffraction (XRD), high resolution
transmission electron microscope (HRTEM), electron diffraction, Raman spectroscopy
and photoluminescence (PL) spectrum. Photoluminescence and Raman result
was coupled to investigation and evaluation of single-layer graphene sheet.
References
[1]
Novoselov, K.S., Geim, A.K., Morozov, S.V., et al. (2004) Electric Field in Atomically Thin Carbon Films. Science, 306, 666-669. http://dx.doi.org/10.1126/science.1102896
[2]
Berger, C., Song, Z., Li, X., Wu, X., Brown, N. and Naud, C. (2006) Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science, 312, 1191-1196.
http://dx.doi.org/10.1126/science.1125925
Gao, Y. and Hao, P.H. (2009) Mechanical Properties of Monolayer Graphene under Tensile and Compressive Loading. Physica E: Low-Dimensional Systems and Nanostructures, 41, 1561-1566. http://dx.doi.org/10.1016/j.physe.2009.04.033
[5]
Oostinga, J.B., Heersche, H.B., Liu, X., Morpurgo, A.F. and Vandersypen, L.M.K. (2008) Gate-Induced Insulating State in Bilayer Graphene Devices. Nature Materials, 7, 151-157.
http://dx.doi.org/10.1038/nmat2082
[6]
Ni, Z., Wang, Y., Yu, T. and Shen, Z. (2008) Raman Spectroscopy and Imaging of Graphene. Nano Research, 1, 273-279. http://dx.doi.org/10.1007/s12274-008-8036-1
[7]
Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z. and Chen, Y. (2008) Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano, 2, 463-470. http://dx.doi.org/10.1021/nn700375n
[8]
de Heer, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., et al. (2007) Epitaxial Graphene. Solid State Communications, 143, 92-100.
http://dx.doi.org/10.1016/j.ssc.2007.04.023
[9]
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S., Zheng, Y., et al. (2010) Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nature Nanotechnology, 5, 574- 578. http://dx.doi.org/10.1038/nnano.2010.132
[10]
Subrahmanyam, K.S., Panchakarla, L.S., Govindaraj, A. and Rao, C.N.R. (2009) Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method. Journal of Physical Chemistry C, 113, 4257-4259. http://dx.doi.org/10.1021/jp900791y
[11]
Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E. and Dai, H. (2008) Highly Conducting Graphene Sheets and Langmuir-Blodgett Films. Nature Nanotechnology, 3, 538-542.
http://dx.doi.org/10.1038/nnano.2008.210
[12]
Dato, A., Radmilovic, V., Lee, Z., Phillips, J. and Frenklach, M. (2008) Substrate-Free Gas- Phase Synthesis of Graphene Sheets. Nano Letters, 8, 2012-2016.
http://dx.doi.org/10.1021/nl8011566
Malesevic, A., Vitchev, R., Schouteden, K., Volodin, A., Zhang, L., Tendeloo, G.V., Vanhulsel, A. and Haesendonck, C.V. (2008) Synthesis of Few-Layer Graphene via Microwave Plasma-Enhanced Chemical Vapourdeposition. Nanotechnology, 19, Article ID: 305604.
http://dx.doi.org/10.1088/0957-4484/19/30/305604
[15]
Vitchev, R., Malesevic, A., Petrov, R.H., Kemps, R., Mertens, M., Vanhulsel, A. and Haesendonck, C.V. (2010) Initial Stages of Few-Layer Graphene Growth by Microwave Plasma-Enhanced Chemical Vapour Deposition. Nanotechnology, 21, Article ID: 095602.
http://dx.doi.org/10.1088/0957-4484/21/9/095602
[16]
Jiao, L., Zhang, L., Wang, X., Diankov, G. and Dai, H. (2009) Narrow Graphene Nanoribbons from Carbon Nanotubes. Nature, 458, 877-880. http://dx.doi.org/10.1038/nature07919
[17]
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. and Kong, J. (2009) Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9, 30-35. http://dx.doi.org/10.1021/nl801827v
[18]
Reina, A., Thiele, S., Jia, X., Bhaviripudi, S., Dresselhaus, M.S., Schaefer, J.A. and Kong, J. (2009) Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces. Nano Research, 2, 509-516.
http://dx.doi.org/10.1007/s12274-009-9059-y
[19]
Dresselhaus, M.S., Malard, L.M., Pimenta, M.A. and Dresselhaus, G. (2009) Raman Spectroscopy in Graphene. Physics Reports, 473, 51-87.
http://dx.doi.org/10.1016/j.physrep.2009.02.003
[20]
Ferrari, A.C. (2007) Raman Spectroscopy of Graphene and Graphite: Disorder, Electron- Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Communications, 143, 47- 57. http://dx.doi.org/10.1016/j.ssc.2007.03.052
[21]
Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C. and Wirtz, L. (2007) Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Grapheme. Nano Letters, 7, 238-242.
[22]
Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Can?ado, L.G., Jorio, A. and Saito, R. (2007) Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Physical Chemistry Chemical Physics, 9, 1276-1290. http://dx.doi.org/10.1039/B613962K
[23]
Das, A., Chakraborty, B. and Sood, A.K. (2008) Raman Spectroscopy of Graphene on Different Substrates and Influence of Defects. Materials Science, 31, 579-584.
[24]
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruoff, R.S. (2010) Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22, 3906-3924.
[25]
Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., et al. (2011) Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. Acs Nano, 5, 6069-6076. http://dx.doi.org/10.1021/nn201978y
[26]
Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., et al. (2009) Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314.
http://dx.doi.org/10.1126/science.1171245
[27]
Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009) Covalent Polymer Functionalization of Graphene Nanosheets and Mechanical Properties of Composites. Journal of Materials Chemistry, 19, 7098-7105. http://dx.doi.org/10.1039/b908220d
[28]
Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. and Tour, J.M. (2010) Improved Synthesis of Graphene Oxide. ACS Nano, 4, 4806-4814. http://dx.doi.org/10.1021/nn1006368
[29]
Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S. and Govindaraj, A. (2009) Graphene: The New Two-Dimensional Nanomaterial. Angewandte Chemie International Edition, 48, 7752-7787. http://dx.doi.org/10.1002/anie.200901678
[30]
Terranova, M.L., Sessa, V. and Rossi, M. (2006) The World of Carbon Nanotubes: An Overview of CVD Growth Methodologies. Chemical Vapor Deposition, 12, 315-325.
http://dx.doi.org/10.1002/cvde.200600030
[31]
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., et al. (2006) Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97, Article ID: 187401. http://dx.doi.org/10.1103/physrevlett.97.187401
[32]
Liu. W.-T., Wu, S.W., Schuck, P.J., Salmeron, M., Shen, Y.R. and Wang, F. (2010) Nonlinear Broadband Photoluminescence of Graphene Induced by Femtosecond Laser Irradiation. Physical Review B, 82, Article ID: 081408.
[33]
Berciaud, S., Han, M.Y., Mak, K.F., Brus, L.E., Kim, P. and Heinz, T.F. (2010) Electron and Optical Phonon Temperatures in Electrically Biased Graphene. Physical Review Letters, 104, Article ID: 227401. http://dx.doi.org/10.1103/physrevlett.104.227401
[34]
Freitag, M., Chiu, H.-Y., Steiner, M., Perebeinos, V. and Avouris, P. (2010) Thermal Infrared Emission from Biased Graphene. Nature Nanotechnology, 5, 497-501.
http://dx.doi.org/10.1038/nnano.2010.90
[35]
Chowdhury, F.A., Morisaki, T., Otsuki, J. and Alam, M.S. (2012) Optoelectronic Properties of Graphene Oxide Thin Film Processed by Cost-Effective Route. Applied Surface Science, 259, 460-464. http://dx.doi.org/10.1016/j.apsusc.2012.07.067
[36]
Eda, G. and Chhowalla, M. (2009) Chemically Derived Graphene Oxide: Towards Large- Area Thin-Film Electronics and Optoelectronics. Advanced Materials, 22, 2392-2415.
[37]
Mei, Q.S., Zhang, K., Guan, G.J., Liu, B.H., Wang, S.H. and Zhang, Z.P. (2010) Highly Efficient Photoluminescent Graphene Oxide with Tunable Surface Properties. Chemical Com- munications, 46, 7319-7321. http://dx.doi.org/10.1039/c0cc02374d
[38]
Tuinstra, F. and Koenig, J.L. (1970) Raman Spectrum of Graphite. Journal of Chemical Physics, 53, 1126-1130. http://dx.doi.org/10.1063/1.1674108
[39]
Matthews, M.J., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S. and Endo, M. (1999) Origin of Dispersive Effects of the Raman D Band in Carbon Materials. Physical Review B, 59, R6585-R6588.
[40]
Cancado, L.G., Takai, K., Enoki, T., et al. (2006) General Equation for the Determination of the Crystallite Size LaLa of Nanographite by Raman Spectroscopy. Applied Physics Letters, 88, Article ID: 163106. http://dx.doi.org/10.1063/1.2196057
[41]
Luo, Z.T., Vora, P.M., Mele, E.J., Johnson, A.T.C. and Kikkawa, J.M. (2009) Photoluminescence and Band Gap Modulation in Graphene Oxide. Applied Physics Letters, 94, 111909- 111911. http://dx.doi.org/10.1063/1.3098358
[42]
Eda, G., Lin, Y.-Y., Mattevi, C., Yamaguchi, H., Chen, H.-A., Chen, I.-S., Chen, C.-W. and Chhowalla, M. (2010) Blue Photoluminescence from Chemically Derived Graphene Oxide. Advanced Materials, 22, 505-509. http://dx.doi.org/10.1002/adma.200901996
[43]
Zhu, H., Wang, X.L., Li, Y.L., Wang, Z.J., Yang, F. and Yang, X.R. (2009) Microwave Synthesis of Fluorescent Carbon Nanoparticles with Electrochemiluminescence Properties. Chemical Communications, 2009, 5118-5120. http://dx.doi.org/10.1039/b907612c