Clusters greatly influence thermophysical properties of near critical gases. The cluster structures of supercritical fluids in general and Carbon Dioxide especially are important for the advanced supercritical fluid technologies and analytics development. The paper extends to near critical densities the developed earlier methods to extract the clusters’ properties from Online Electronic Database of NIST on thermophysical properties of fluids. This Database contains a hidden knowledge of cluster fractions’ properties in real gases. The discovered earlier linear chain clusters dominate at intermediate densities. Their properties can be extrapolated to high density gases, thus opening the way to study large 3D clusters in near critical zone. The potential energy density of a gas, cleared from the chain clusters’ contribution, reflects only the 3D clusters’ characteristics. A series expansion of this value by the Monomer Fraction density discovers properties of n-particle 3D clusters. The paper demonstrates a discrete row of 3D clusters’ particle numbers and gives estimations for bond energies of these clusters.
References
[1]
McHugh, M.A. and Krukonis, V.J. (1986) Supercritical Fluid Extraction: Principles and Practice. Butterworth Publishers, Stoneham.
[2]
Taylor, L.T. (1996) Supercritical Fluid Extraction. John Wiley & Sons Ltd., New York.
[3]
McHardy, J. and Sawan, S.P., Eds. (1998) Supercritical Fluid Cleaning. Fundamentals, Technology and Applications. Noyes Publications, Westwood.
[4]
Gumerov, F.М., Sabirzyanov, А.N. and Gumerova, G.I. (2007) Sub- and Supercritical Fluids in Polymer Processing. 2nd Edition, Publishing House “FAN”, Kazan.
[5]
Brondz, I. and Brondz, A. (2012) Supercritical Fluid Chromatography-Mass Spectrometry (SFC-MS) of Heterocyclic Compounds with Trivalent and Pentavalent Nitrogen in Cough Relief Medical Forms Tuxi and Cosylan. American Journal of Analytical Chemistry, 3, 870-876. http://dx.doi.org/10.4236/ajac.2012.312A115
[6]
Brondz, I. and Brondz, A. (2014) Review: Isomer Separation, Chiral Resolution, and Structure Elucidation Analyses are the Future of Analytical Supercritical Fluid Chromatography-Mass Spectrometry. International Journal of Analytical Mass Spectrometry and Chromatography, 2, 15-24. http://dx.doi.org/10.4236/ijamsc.2014.21002
[7]
Brondz, I. (2009) Chapter 5, SFC-MS Analysis of Contaminants in Primaquine Diphosphate Tablets and Spectral UV and NMR Characterizing of Primaquine and Quinocide. In: Csizmadia, E. and Kalnoky, I., Eds., Antimalarial Drugs: Costs, Safety and Efficacy, Nova Science Publishers, Inc., Hauppauge, 105-124.
[8]
Brondz, I. and Brondz, A. (2012) The Technology for Preparation of Generic (Monoenantiomeric) Antimalarial Drug Primaquine by Using Supercritical Fluid Chromatography. Separation of Primaquine from Quinocide: Simultaneous Resolution of the Enantiomers of Primaquine and Their Separation from Quinocide in One Run. American Journal of Analytical Chemistry, 3, 884-890. http://dx.doi.org/10.4236/ajac.2012.312A117
[9]
Andradea, K.S., Gonçalveza, R.T., Maraschinb, M., Ribeiro-do-Vallec, R.M., Martínezd, J. and Ferreiraa, S.R.S. (2012) Supercritical Fluid Extraction from Spent Coffee Grounds and Coffee Husks: Antioxidant Activity and Effect of Operational Variables on Extract Composition. Talanta, 88, 544-552. http://dx.doi.org/10.1016/j.talanta.2011.11.031
[10]
Couto, R.M. Fernandes, J. Gomes da Silva, M.D.R. and Simões, C. (2009) Supercritical Fluid Extraction of Lipids from Spent Coffee Grounds. The Journal of Supercritical Fluids, 51, 159-166. http://dx.doi.org/10.1016/j.supflu.2009.09.009
[11]
Araújo, J.M.A. and Sandi, D. (2007) Extraction of Coffee Diterpenes and Coffee Oil Using Supercritical Carbon Dioxide. Food Chemistry, 101, 1087-1094.
http://dx.doi.org/10.1016/j.foodchem.2006.03.008
[12]
Gumerov, F.M., Kayumov, R.A., Usmanov, R.A., Sagdeev, A.A., Abdullin, I.S.H. and Sharafeev, R.F. (2012) Waste Management in Propylene Epoxidation Process with the Use of Supercritical Fluid Media. American Journal of Analytical Chemistry, 3, 950-957.
http://dx.doi.org/10.4236/ajac.2012.312A126
[13]
Sujatha, K., Pitchaiah, K.C., Sivaraman, N., Srinivasan, T.G. and Rao, P.R.R.V. (2012) Recovery of Uranium and Plutonium from Waste Matrices Using Supercritical Fluid Extraction. American Journal of Analytical Chemistry, 3, 916-922.
http://dx.doi.org/10.4236/ajac.2012.312A121
[14]
Zakharov, A.A., Jaddoa, A.A., Bilalov, T.R. and Gumerov, F.М. (2014) Synthesis of the Palladium Catalyst with the Supercritical СO2-Impregnation Method Realized in the Static Mode. International Journal of Analytical Mass Spectrometry and Chromatography, 2, 113- 122. http://dx.doi.org/10.4236/ijamsc.2014.24010
[15]
Sedunov, B. (2015) Clusters—The Seeds of Droplets and Snowflakes. The Voice of the Publisher, 1, 66-76. http://dx.doi.org/10.4236/vp.2015.13009
[16]
Sedunov, B. (2012) The Analysis of the Equilibrium Cluster Structure in Supercritical Carbon Dioxide. American Journal of Analytical Chemistry, 3, 899-904.
http://dx.doi.org/10.4236/ajac.2012.312A119
[17]
Sedunov, B. (2013) The Equilibrium Thermal Physics of Supercritical Fluids. International Journal of Analytical Mass Spectrometry and Chromatography, 1, 103-108.
http://dx.doi.org/10.4236/ijamsc.2013.12013
[18]
Sedunov, B. (2013) Thermal Analysis of Thermophysical Data for Equilibrium Pure Fluids. Journal of Modern Physics, 4, 8-15. http://dx.doi.org/10.4236/jmp.2013.47a2002
[19]
Sedunov, B. (2015) Discovering the Cluster World. Lambert Academic Publishing, Saarbrucken 108.
[20]
Sedunov, B. (2016) The Wonders of Molecular Interactions. Lambert Academic Publishing, Saarbrucken, 104.
[21]
Sedunov, B. (2014) The Physics of Clusters in Real Gases. Atiner’s Conference Paper Series, No. PHY2014-1280, Athens. http://www.atiner.gr/papers/PHY2014-1280.pdf
[22]
Sedunov, B. (2013) Nanosized Objects in Equilibrium Supercritical Fluids. MATEC Web of Conferences, 3, Article Number: 01062. http://dx.doi.org/10.1051/matecconf/20130301062
[23]
Webbook. NIST (2011) Thermophysical Properties of Fluid Systems.
http://webbook.nist.gov/chemistry/fluid
[24]
Sedunov, B.I. (2013) The Numerical Integration Method of the First-Order ODE for Numerical Analysis of Thermophysical Data. Vestnik RosNOU, 25-28.
[25]
Sedunov, B. (2012) Equilibrium Molecular Interactions in Pure Gases. Journal of Thermodynamics, 2012, Article ID: 859047. http://dx.doi.org/10.1155/2012/859047
[26]
Sedunov, B. (2008) Monomer Fraction in Real Gases. International Journal of Thermodynamics, 11, 1-9.
[27]
Aster, R.C., Borchers, B. and Thurber, C. (2012) Parameter Estimation and Inverse Problems. 2nd Edition, Elsevier, Amsterdam.
[28]
Keim, D., Kohlhammer, J., Ellis, G. and Mansmann, F. (Eds.) (2010) Mastering the Information Age: Solving Problems with Visual Analytics. Eurographics Association Goslar.
[29]
Dzemyda, G. and Sakalauskas, L. (2011) Large-Scale Data Analysis Using Heuristic Methods. Vilnius University, Informatica, 22, 1-10.
[30]
Brondz, I. (2016) Review: Adducts and Clusters in Chromatography, Mass Spectrometry and Nature. International Journal of Analytical Mass Spectrometry and Chromatography, 4, 27-33. http://dx.doi.org/10.4236/ijamsc.2016.42003
[31]
Brondz, I. (2016) Review: Discovering the Cluster World. Clusters’ Hidden Parameters Extraction from Thermophysical Data and the Wonders of Molecular Interactions. The Experimentally Based Molecular Interaction Features. International Journal of Analytical Mass Spectrometry and Chromatography, 4, 34-38. http://dx.doi.org/10.4236/ijamsc.2016.42004
[32]
Sedunov, B. (2015) The Molecular Physics of Chain Clusters. Atiner’s Conference Paper Series, No. PHY2015-1711, Athens.
[33]
Sedunov, B. (2013) Equilibrium Structure of Dense Gases. MATEC Web of Conferences, 3, Article Number: 01002. http://dx.doi.org/10.1051/matecconf/20130301002
[34]
Koudryavtsev, A.B. Jameson, R.F. and Linert, W. (2001) The Law of Mass Action. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-642-56770-4