In this paper, a bank of tubes containing a flowing fluid which is immersed in a cross flow second medium of fluid with different temperature has been studied numerically using computational fluid dynamics. Laminar steady flow with a low Reynolds number has been studied in this work. Inlet mass flow rate and the bulk temperature are known and numerical method has been implemented to study the convective heat transfer to investigate the temperature and flow fields. Effects of different inlet bulk temperatures and mass flow rates have been investigated on temperature and pressure variations.
References
[1]
Shan, R.K. and Bhatti, M.S. (1987) Laminar Convective Heat Transfer in Ducts, Hand Book of Single-Phase Convective Heat Transfer. Wiley Interscience, New York
[2]
Colburn, A.P. (1933) A Method of Correlating Forced Convection Heat Transfer Data and A Comparison with Fluid Friction. International Journal of Heat and Mass Transfer, 7, 1359-1384. http://dx.doi.org/10.1016/0017-9310(64)90125-5
[3]
Sieder, E.N. and Tate, G.E. (1936) Heat Transfer and Pressure Drop of Liquids in Tubes. Industrial & Engineering Chemistry Research, 28, 1429-1435. http://dx.doi.org/10.1021/ie50324a027
[4]
Gough, M.J. (2011) Process Heat Transfer Enhancement to Upgrade Performance, Throughput and Reduced Energy Use. Chemical Engineering Transactions, 29, 1-6.
[5]
Wang, Y., He, Y.L., Mei, D.H. and Tao, W.Q. (2011) Optimization Design of Slotted Fin by Numerical Simulation Coupled with Genetic Algorithm. Applied Energy, 88, 4441-4450. http://dx.doi.org/10.1016/j.apenergy.2011.05.030
[6]
Yayla, S. (2013) Flow Characteristic of Staggered Multiple Slotted Tubes in the Passage of a Fin Tube Heat Exchanger. Strojniski Vestnik-Journal of Mechanical Engineering, 59, 462-472. http://dx.doi.org/10.5545/sv-jme.2012.902
[7]
Ribatski, G. and Jacobi, A.M. (2005) Falling Film Evaporation on Horizontal Tubes—A Critical Review. International Journal of Refrigeration, 28, 635-653. http://dx.doi.org/10.1016/j.ijrefrig.2004.12.002