We performed systematic laser spectroscopic investigations of La I spectral lines, using optogalvanic detection. Sixteen previously unknown even parity levels, having energies between 40,300 and 44,300 cm-1, are reported. These levels classify altogether 67 lines, not listed in spectral tables. The new levels were found due to the observation of the depopulation of the lower levels of the excited transitions. We found a remarkable variation of the observed widths of single hyperfine structure components dependent on the energy of the upper excited levels. Some levels having energies higher than 43,000 cm-1 appear to have a very high ionization probability.
References
[1]
Firestone, R.B., Shirley, V.S., Baglin, C.M., Chu S.Y.F. and Zipkin, J. (1996) Table of Isotopes. Wiley, New York.
[2]
Fischer, W., Hühnermann, H., Mandrek, K. and Ihle H. (1972) Optical Determination of the Quadrupole Moment of 138La. Physics Letters B, 40, 87.
http://dx.doi.org/10.1016/0370-2693(72)90290-0
[3]
Anderson, O.E. (1934) The Nuclear Mechanical Moment of Lanthanum from Hyperfine Structure. Physical Review, 45, 685.
[4]
Raghavan, P. (1989) Table of Nuclear Moments. Atomic Data and Nuclear Data Tables, 42, 189. http://dx.doi.org/10.1016/0092-640X(89)90008-9
[5]
Nighat, Y., Raith, M., Manzoor, H. and Windholz, L. (2010) Investigation of the Hyperfine Structure of Lanthanum Lines by a Laser-Induced Fluorescence Technique. Journal of Physics B, 43, 125001. http://dx.doi.org/10.1088/0953-4075/43/12/125001
[6]
Gücelüimen, F., Siddiqui, I., Başar, B., Kröger, S. and Windholz, L. (2012) New Energy Levels and Hyperfine Structure Measurements of Neutral Lanthanum by Laser-Induced Fluorescence Spectroscopy. Journal of Physics B, 45, 135005.
http://dx.doi.org/10.1088/0953-4075/45/13/135005
[7]
Siddiqui, I., Shamim, K., Gamper, B., Dembczyński, J. and Windholz, L. (2013) Optogalvanic Spectroscopy of the Hyperfine Structure of Weak La I Lines: Discovery of New Even Parity Fine Structure Levels. Journal of Physics B, 46, 065002.
http://dx.doi.org/10.1088/0953-4075/46/6/065002
[8]
Gamper, B., G1owacki, P., Siddiqui, I., Dembczyński, J. and Windholz, L. (2014) New Even- Parity Fine Structure Levels of the Lanthanum Atom Discovered by Means of Optogalvanic Spectroscopy. Journal of Physics B, 47, 165001.
http://dx.doi.org/10.1088/0953-4075/47/16/165001
[9]
Peck, E.R. and Reeder, K. (1972) Dispersion of Air. Journal of the Optical Society of America, 62, 958-962. http://dx.doi.org/10.1364/JOSA.62.000958
[10]
Guthöhrlein, G.H. and Windholz, L. (1995) Optogalvanic Spectroscopy—A Useful Tool in Atomic and Plasma Physics. In: Veza, D., Ed., The Physics of Ionized Gases, Nova Science Publishers, Huntington, NY, USA.
[11]
Martin, W.C., Zalubas, R., and Hagan, L. (1978) Atomic Energy Levels—The Rare-Earth Elements. National Bureau of Standards, USA, 60.
[12]
Harrison, G.R., Ed. (1969) Wavelength Tables. Massachusetts Institute of Technology, The M.I.T. Press, USA.
[13]
Furmann, B., Stefańska, D. and Dembczyński, J. (2007) Hyperfine Structure Analysis Odd Configurations Levels in Neutral Lanthanum: I. Experimental. Physica Scripta, 76, 264.
http://dx.doi.org/10.1088/0031-8949/76/3/010
[14]
Başar, Gü., Başar, Gö., Er, A. and Kröger, S. (2007) Experimental Hyperfine Structure Investigation of Atomic La. Physica Scripta, 75, 572.
http://dx.doi.org/10.1088/0031-8949/75/4/034
[15]
Guthöhrlein, G.H. (1998) Program Package \"Fitter\". Helmut-Schmidt-Universität, Universität der Bundeswehr, Hamburg, Germany (Unpublished).
[16]
Başar, Gü., Başar, Gö. and Kröger, S. (2009) High Resolution Measurements of the Hyperfine Structure of Atomic Lanthanum for Energetically Low Lying Levels of Odd Parity. Optics Communications, 282, 562-567.
http://dx.doi.org/10.1016/j.optcom.2008.10.048
[17]
Yu, T. (1957) Hyperfine Structure and Quadrupole Moment of Lanthanum-139. Physical Review, 108, 295. http://dx.doi.org/10.1103/PhysRev.108.295
[18]
Childs, W.J. and Nielsen, U. (1988) Hyperfine Structure of the (5d+6s)3 Configuration of 139La I: New Measurements and Ab Initio Multiconfigurational Dirac-Fock Calculations. Physical Review A, 37, 6. http://dx.doi.org/10.1103/PhysRevA.37.6
[19]
Höhle, C., Hühnermann, H. and Wagner, H. (1982) Measurements of the Hyperfine Structure Constants of All the 5d 2 and 5d6s Levels in 139La II Using the High-Resolution Spectroscopy on Collinear Laser-Ion-Beams. Zeitschrift für Physik A, 304, 279.
[20]
Furmann, B., Stefańska, D. and Dembczyński, J. (2009) Experimental Investigations of the Hyperfine Structure in Neutral La: I. Odd Parity Levels. Journal of Physics B, 42, 175005.
http://dx.doi.org/10.1088/0953-4075/42/17/175005
[21]
Luo, C.A., Qu, J.N., Zhu, L.Z. and Lin, F.C. (1990) Studies on the Hyperfine Structure of La I in a Hollow-Cathode Discharge Tube. Journal of Physics D, 23, 1327.
[22]
Childs, W.J. and Goodman, L.S. (1978) Hyperfine Structure of Excited, Odd-Parity Levels in 139La by Laser-Atomic-Beam Fluorescence. Journal of the Optical Society of America, 68, 1348-1350. http://dx.doi.org/10.1364/JOSA.68.001348
[23]
Furmann, B., Stefańska, D. and Dembczyński, J. (2010) Experimental Investigations of the Hyperfine Structure in Neutral La: II. Even Parity Levels. Journal of Physics B, 43, No. 1.
http://dx.doi.org/10.1088/0953-4075/43/1/015001
[24]
Kramida, A., Ralchenko, Yu., Reader, J. and NIST ASD Team (2015) NIST Atomic Spectra Database (Version 5.3). National Institute of Standards and Technology, Gaithersburg, MD.
http://physics.nist.gov/asd
[25]
Garton, W.R.S. and Wilson, M. (1966) Autoionization Broadened Rydberg Series in the Spectrum of La I. Astrophysical Journal, 145, 333. http://dx.doi.org/10.1086/148764
[26]
Rausch von Traubenberg, H., Gebauer, R. and Lewin, G. (1930) über die Existenzgrenzen von Anregungszuständen des Wasserstoffatoms in starken elektrischen Feldern. Naturwissens-chaften, 18, 417.