In this paper, the transceiver performance of optical 64QAM-OFDM signals with different sub-car- riers is studied. Firstly, we build a 40Gbit/s optical coherent 64QAM-OFDM transmission system. 64QAM-OFDM optical signals with 16, 32, 64, 64, 128, 256 and 512 sub-carriers are transmitted over 100 km single mode fiber (SMF). Then, the optical spectrum diagrams before and after transmission, the bit error rate (BER) and constellation diagrams of received signals were compared. The simulation results show that, with the number of sub-carriers increasing, the value of PAPR will gradually increase and the quality of the received optical signals will deteriorate. Moreover, with the number of sub-carriers increasing, the computational complexity will increase when digital signal processing (DSP) is used. Therefore, we should choose the optimal number of sub-carriers, and the PAPR influence and BER are also considered for achieving effective transmission.
References
[1]
Shao, Y.F., Wang, Y.J. and Chi, N. (2013) 60-GHZ RoF System with Low PAPR 16QAM-OFDM Downlink Using PTS Segmenta-tion. IEEE Photonics Technology Letters, 25, 855-858. http://dx.doi.org/10.1109/LPT.2013.2252425
[2]
Yang, F., He, L.F. and Pan, C.Y. (2013) OFDM Principles and Standards: Evolution of Communication Techniques. Publishing House of Electronics Industry, Beijing, 38-39.
[3]
Shao, Y.F., Chi, N. and Fan, J.Y. (2012) Novel Centralized-Light-Source WDM-RoF System with OFDM-CPM Downstream and OOK Upstream. Optics Communications, 285, 3437-3440.
http://dx.doi.org/10.1016/j.optcom.2012.03.024
[4]
Shao, Y.F., Chi, N., Fan, J.Y. and Fang, W.L. (2012) Generation of 16-QAM-OFDM Signals Using Selected Mapping Method and Its Application in Optical Millimeter-Wave Access System. IEEE Photonics Technology Letters, 24, 1301-1303. http://dx.doi.org/10.1109/LPT.2012.2202387
[5]
Shao, Y.F. and Chi, N. (2012) A Novel Scheme for Seamless Integration of RZ-DPSK-DWDM Optical Links with MIMO-OFDM System. Microwave and Optical Technology Letters, 54, 1676-1679.
http://dx.doi.org/10.1002/mop.26891
[6]
Shao, Y.F., Chen, L., Wen, S.C., Yu, J.J., He, J., Chen, L.L. and Liu, H.Y. (2007) Novel Optical Orthogonally Modulation Scheme for Superimposing DPSK Signals on Dark RZ Signals. Optics Communications, 15, 1415-1416.
[7]
Yu, J., Zhou, X., Huang, M.F., Qian, D., Ji, P.N., Wang, T. and Magill, P. (2009) 400Gb/s (4×100Gb/s) Orthogonal PDM-RZ-QPSK DWDM Signal Transmission over 1040km SMF-28. Optics Express, 17, 17928-17933.
http://dx.doi.org/10.1364/OE.17.017928
[8]
Shao, Y.F., Chi, N., Fan, J.Y. and Fang, W.L. (2012) Generation of 16-QAMOFDM Signals Using Selected Mapping Method and Its Application in Optical Millimeter-Wave Access System. IEEE Photonics Technology Letters, 24, 1301-1303. http://dx.doi.org/10.1109/LPT.2012.2202387
[9]
Shao, Y.F., Chi, N., Fan, J.Y., Wang, Y.J. and Fang, W.L. (2012) Novel Centralized-Light-Source WDM-RoF System with OFDM-CPM Downstream and OOK Upstream. Optics Com-munications, 285, 3437-3440.
http://dx.doi.org/10.1016/j.optcom.2012.03.024
[10]
Sun, H., Wu, K.-T. and Kim, R. (2008) Real-Time Measurements of a 40 Gb/s Coherent System. Optics Express, 16, 873-879. http://dx.doi.org/10.1364/OE.16.000873