全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Ultraviolet Hybrid Plasmonic Waveguide for Nanolaser Applications

DOI: 10.4236/opj.2016.68B004, PP. 19-23

Keywords: Ultraviolet, Plasmonic, Waveguide

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, a novel hybrid plasmonic waveguide with a metal ridge and an MgF2 dielectric layer is demonstrated at ultraviolet band. We investigate the propagation distance, the scaling factor and the figure of merit by using the finite element method. The structure enables low scaling factor and long propagation distance. Compared to the previous structure with a metal plate, this waveguide has better performance. And the structure can be used as a nanolaser and has broad application prospects in optoelectronic integrated circuits, biological detection and so on.

References

[1]  Zhu, L. (2010) Modal Properties of Hybrid Plasmonic Waveguides for Nanolaser Applications. IEEE Photonics Technology Letters, 22, 535-537. http://dx.doi.org/10.1109/LPT.2010.2041923 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5418941&tag=1
[2]  Gramotnev, D.K., and Bozhevolnyi, S.I. (2010) Plasmonics beyond the Diffraction Limit. Nature Photonics, 4, 83-91. http://dx.doi.org/10.1038/nphoton.2009.282 http://www.nature.com/nphoton/journal/v4/n2/abs/nphoton.2009.282.html
[3]  Barnes, W.L., Dereux, A. and Ebbesen, T.W. (2003) Surface Plasmon Subwavelength Optics. Nature, 424, 824-830. http://dx.doi.org/10.1038/nature01937 http://www.nature.com/nature/journal/v424/n6950/abs/nature01937.html
[4]  Hill, M.T., Marell, M., Leong, E.S., Smalbrugge, B., Zhu, Y.C., Sun, M.H., N?tzel, R., et al. (2009) Lasing in Metal- Insulator-Metal Sub-Wavelength Plasmonic Waveguides. Optics Express, 17, 11107-11112. http://dx.doi.org/10.1364/OE.17.011107 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-17-13-11107
[5]  Holmgaard, T., Gosciniak, J. and Bozhevolnyi, S.I. (2010) Longrange Dielectric-Loaded Surface Plasmon-Polariton Waveguides. Optics Express, 18, 23009-23015. http://dx.doi.org/10.1364/OE.18.023009 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-22-23009
[6]  Zou, C.I., Sun, F.W., Xiao, Y.F., Dong, C.H., Chen, X.D., Cui, J.M., Gong, Q., Han, Z.F. and Guo, G.C. (2010) Plasmon Modes of Silver Nanowire On A Silica Substrate. Apply Physics Letter, 97, 18310. http://scitation.aip.org/content/aip/journal/apl/97/18/10.1063/1.3509415
[7]  Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P. and Zhang, X. (2008) A Hhybrid Plasmonic Waveguide for Subwavelength Confinement and Long-Range Propagation. Nature Photonics, 2, 496-500. http://dx.doi.org/10.1038/nphoton.2008.131 http://www.nature.com/nphoton/journal/v2/n8/abs/nphoton.2008.131.html
[8]  Chen, Y., Tong, C., Qin, L., Wang, L.J. and Zhang, J.L. (2012) Progress in Surface Plasmon Polariton Nano-Laser Technologies and Ap-plications. Chinese Optics, 5, 453-463. http://dx.doi.org/10.3788/co.20120505.0453 http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGGA201205004.htm
[9]  Wu., J.-L. (2005) Study of ZnO Nanoscale Laser with Near Ultraviolet Wavelength. Vacuum Electronics, 6, 001. http://www.cnki.com.cn/Article/CJFDTotal-ZKDJ200506001.htm
[10]  Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H. and Yang, P. (2001) Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 292, 1897-1899. http://dx.doi.org/10.1126/science.1060367 http://science.sciencemag.org/content/292/5523/1897
[11]  Zhang, Q., Li, G., Liu, X., Qian, F., Li, Y., Sum, T.C. and Xiong, Q. (2014) A Room Temperature Low-Threshold Ultraviolet Plasmonic Nanolaser. Nature Communications, 5. http://dx.doi.org/10.1038/ncomms5953 http://www.nature.com/ncomms/2014/140923/ncomms5953/full/ncomms5953.html
[12]  Hu, M.Z., Zhou, S.Y., Han, Q., Sun, H., Zhou, L.P., Zeng, C.M., Wu, Z.F. and Wu, X.M. (2014) Ultrviolet Surface Pplasmon Propagation for ZnO Semiconduc-tor-Insulator-Metal Waveguides. Acta Phys. Sin, 63, 029501. http://wulixb.iphy.ac.cn/CN/abstract/abstract56954.shtml
[13]  Sharma, A.K. and Gupta, B.D. (2007) On the Performance of Different Bimetallic Combinations in Surface Plasmon Resonance Based Fiber Optic Sensors. Journal of Applied Physics, 101, 093111. http://dx.doi.org/10.1063/1.2721779 http://scitation.aip.org/content/aip/journal/jap/101/9/10.1063/1.2721779
[14]  Mu, J., Chen, L., Li, X., Huang, W.P., Kimerling, L.C. and Michel, J. (2013) Hybrid Nano Ridge Plasmonic Polaritons Waveguides. Applied Physics Letters, 103, 131107. http://dx.doi.org/10.1063/1.4823546 http://scitation.aip.org/content/aip/journal/apl/103/13/10.1063/1.4823546
[15]  Bian, Y., Zheng, Z., Liu, Y., Zhu, J. and Zhou, T. (2011) Coplanar Plasmonic Nanolasers Based on Edge-coupled Hybrid Plasmonic Waveguides. IEEE Photonics Technology Letters, 23, 884-886. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5753919&tag=1 http://dx.doi.org/10.1109/LPT.2011.2141981
[16]  Liu, J.-T., Xu, B.-Z., Zhang, J., Cai, L.-K. and Song, G.-F. (2012) Gain-Assisted Indented Plasmonic Waveguide for Low-Threshold Nanolaser Applications. Chinese Physics B, 21, 107303. http://dx.doi.org/10.1088/1674-1056/21/10/107303 http://iopscience.iop.org/article/10.1088/1674-1056/21/10/107303/meta

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133