I consider a preon model
for quarks and leptons based on constituents defined by mass, spin and charge.
The preons form a finite combinatorial system for the standard model fermions.
The color and weak interaction gauge structures can be deduced from the preon
bound states. By applying the area eigenvalues of loop quantum gravity to black
hole preons, one
gets a preon mass spectrum starting from zero. Gravitational baryon number
non-conservation mechanism is obtained. Argument is given for unified field
theory is based only on gravitational and electromagnetic interactions of
preons.
Raitio, R. (2016) Standard Model Matter Emerging from
Spacetime Preons. Open Access Library Journal, 3, e2788.
[4]
Maldacena, J.
(1998) The Large NN Limit of Superconformal Field Theories and Supergravity. Advances in Theoretical and Mathematical
Physics, 2,
231-252. http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
[5]
Van Raamsdonk, M. (2010)
Building up Spacetime with Quantum Entanglement. International Journal of Modern Physics D, 19, 2429-2435. http://dx.doi.org/10.1142/S0218271810018529
[6]
Lashkari,
N., McDermott, M. and Van Raamsdonk, M. (2014) Gravitational Dynamics from Entanglement
“Thermodynamics”. JHEP, 1404, 195. http://dx.doi.org/10.1007/JHEP04(2014)195
[7]
Faulkner,
T., Guica, M., Hartman, T., Myers, R. and Van Raamsdonk, M. (2014) Gravitation
from Entanglement in Holographic CFTs. JHEP, 1403,
51.
[8]
Swingle, B. and Van Raamsdonk, M. (2014)
Universality of Gravity from Entanglement.
[9]
Ryu,
S. and Takayanagi, T (2006) Holographic
Derivation of Entanglement Entropy from the Anti-De Sitter Space/Conformal Field Theory
Correspondence. Physical
Review
Letter, 96, 181602. http://dx.doi.org/10.1103/PhysRevLett.96.181602
[10]
Smolin,
L. (2016) Holographic Relations
in Loop Quantum Gravity.
Wheeler, J.
(1971) Cortona Symposium on Weak Interactions. Edited by Radicati, L., Accademia
Nazionale dei Lincei, Rome.
[21]
Rovelli, C. and
Colosia, D. (2009) What Is a Particle? Classical
and Quantum Gravity, 26, Article ID: 025002.
[22]
Chan, H.-M. and Tsou, S. (2015) The Framed Standard Model (I) and (II).
[23]
Chan, H.-M. and Tsou, S. (1998) Physical Consequences of Non-Abelian Duality in the Standard Model. Physical
Review D, 57,
2507-2522. http://dx.doi.org/10.1103/PhysRevD.57.2507
[24]
Bird, S., Cholis, I.,
Munoz, J., Ali-Haimoud, Y., Kamionkowski, M., Kovetz, E., Raccanelli, A. and
Riess, A. (2016) Did Ligo Detect Dark Matter?
Ariwahjoedi, S.,
Astuti, V., Kosasih, J., Rovelli, C. and
Zen, F. (2016) Statistical Discrete Geometry.
[32]
Ashtekar, A.,
Baez, J., Corichi, A. and Krasnov, K. (1998) Quantum Geometry and Black Hole Entropy. Physical Review Letters, 80,
904-907. http://dx.doi.org/10.1103/PhysRevLett.80.904
[33]
Barbero, G.J. and Perez, A. (2015) Quantum Geometry and
Black Holes.
[34]
Brown, J. and York Jr., J. (1993) Quasilocal Energy and Conserved Charges
Derived from the Gravitational Action. Physical
Review D, 47,
1407-1419. http://dx.doi.org/10.1103/PhysRevD.47.1407
[35]
Frodden, E., Ghosh, A. and Perez, A. (2013) Quasilocal
First Law for Black Hole Thermodynamics. Physical Review D, 87, Article ID: 121503. http://dx.doi.org/10.1103/PhysRevD.87.121503