Gedanken Experiment for Looking at δgtt for Initial Expansion of the Universe and Influence on HUP via Dynamical Systems, with Positive Pre-Planckian Acceleration
We examine through the lens of dynamical systems a “one dimensional” time mapping of emergent VEV from Pre-Planckian space time conditions. As it is, we will from first principles examine what adding acceleration does as to the HUP previously derived. In doing so, we will be trying it in our discussion with the earlier work done on the HUP. not equal to zero, constant, but large would frequently imply which would have three dissimilar real valued roots. And the situation with not equal to zero yields more tractable result for which will have implications for the HUP inequality in Pre-Planckian space-time, and buttresses an analysis of a 1 dimensional “time” mapping for emergent VEV (vacuum expectation values).
References
[1]
Hu, B. (1984) Vacuum Viscosity and Entropy Generation in Quantum Gravitational Pro- cesses in the Early Universe. In: Fang, L.Z. and Ruffini, R., Eds., Cosmology of the Early Universe, World Press Scientific, Singapore, 23-44.
[2]
Beckwith, A. (2016) Gedanken Experiment for Refining the Unruh Metric Tensor Uncertainty Principle via Schwartz Shield Geometry and Planckian Space-Time with Initial Nonzero Entropy and Applying the Riemannian-Penrose Inequality and Initial Kinetic Energy for a Lower Bound to Graviton Mass (Massive Gravity). Journal of High Energy Physics, Gravitation and Cosmology, 2, 106-124. http://dx.doi.org/10.4236/jhepgc.2016.21012
[3]
Goldhaber, A. and Nieto, M. (2010) Photon and Graviton Mass Limits. Reviews of Modern Physics, 82, 939-979. http://arxiv.org/abs/0809.1003
http://dx.doi.org/10.1103/revmodphys.82.939
[4]
Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Press Scientific, Hackensack. http://dx.doi.org/10.1142/6730
[5]
Barbour, J. (2009) The Nature of Time. http://arxiv.org/pdf/0903.3489.pdf
[6]
Barbour, J. (2010) Shape Dynamics: An Introduction. In: Finster, F., Muller, O., Nardmann, M., Tolksdorf, J. and Zeidler, E., Eds., Quantum Field Theory and Gravity, Conceptual and Mathematical Advances in the Search for a Unified Framework, Birkhauser, Springer-Ver- lag, London, 257-297.
[7]
Handley, W.J., Brechet, S.D., Lasenby, A.N. and Hobson, M.P. (2014) Kinetic Initial Conditions for Inflation. http://arxiv.org/pdf/1401.2253v2.pdf
[8]
Ringstrom, H. (2013) On the Topology and Future Stability of the Universe. Oxford Science Publications, Oxford. http://dx.doi.org/10.1093/acprof:oso/9780199680290.001.0001
[9]
Beyer, W. (1990) CRC Standard Mathematical Tables. 28th Edition, CRC Press, Boca Raton.
[10]
Katok, A. and Hasselblatt, B. (1999) Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, New York.
[11]
Kolb, E., Pi, S.-Y. and Raby, S. (1984) Phase Transitions in Supersymmetric Grand Unified Models. In: Zhi, F.L. and Ruffini, R., Eds., Cosmology of the Early Universe, World Press Scientific, Hong Kong.
[12]
Unruh, W.G. (1986) Why Study Quantum Theory? Canadian Journal of Physics, 64, 28-130.
http://dx.doi.org/10.1139/p86-019
[13]
Unruh, W.G. (1986) Erratum: Why Study Quantum Gravity? Canadian Journal of Physics, 64, 1453. http://dx.doi.org/10.1139/p86-257
[14]
Gutfreund, H. and Renn, J. (2015) The Road to Relativity, the History and Meaning of Einstein’s “The Foundation of General Relativity” (Featuring the Original Manuscript of Einstein’s Masterpiece). Princeton University Press, Princeton.
http://dx.doi.org/10.1515/9781400865765
[15]
Griffiths, J. and Podolsky, J. (2009) Exact Space-Times in Einstein’s General Relativity. Cambridge Monographs in Mathematical Physics, Cambridge.
http://dx.doi.org/10.1017/CBO9780511635397
Morrison, D.R. and Vafa, C. (1996) Compactifications of F-Theory on Calabi-Yau Threefolds (I). Nuclear Physics B, 473, 74-92. http://dx.doi.org/10.1016/0550-3213(96)00242-8
[18]
Morrison, D.R. and Vafa, C. (1996) Compactifications of F-Theory on Calabi-Yau Threefolds (II). Nuclear Physics B, 476, 437-469. http://dx.doi.org/10.1016/0550-3213(96)00369-0
[19]
Klemm, A. and Schimmrigk, R. (1994) Landau-Ginzburg String Vacua. Nuclear Physics B, 411, 559-583. (E-Print arXiv:hep-th/9204060)
[20]
http://www.aei.mpg.de/~theisen/lectures.pdf
[21]
Bojowald, M. (2007) What Happened before the Big Bang? Nature Physics, 3, 523-525.
http://dx.doi.org/10.1038/nphys654
Penrose, R. (2010) Cycles of Time: An Extraordinary New View of the Universe. The Bodley Head, London.
[24]
Petrov, A.Z. (1969) Einstein Spaces. Pergamon Press, Oxford.
[25]
Gorbunov, D. and Rubakov, V. (2011) Introduction to the Theory of the Early Universe, Cosmological Perturbations and Inflationary Theory. World Scientific Publishing Pte. Ltd., Singapore. http://dx.doi.org/10.1142/7873
[26]
Fulling, S.A. (1991) Aspects of Quantum Field Theory in Curved Space-Time. London Mathematical Society Student Texts 17. Cambridge University Press, Cambridge.
[27]
Wald, R.M. (1994) Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago.
[28]
Fredenhagen, K. and Rejzner, K. (2010) Local Covariance and Background Independence. In: Finster, F., Muller, O., Nardmann, M., Tolksdorf, J. and Zeidler, E., Eds., Quantum Field Theory and Gravity, Conceptual and Mathematical Advances in the Search for a Unified Framework, Springer-Verlag, London, 15-23.
[29]
Corda, C. (2012) Primordial Gravity’s Breath. Electronic Journal of Theoretical Physics, 9, 1-10. http://arxiv.org/abs/1110.1772
[30]
Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282.
http://dx.doi.org/10.1142/S0218271809015904
[31]
Abbott, B.P., et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, 061102. https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102