New data from FRB’s have provided an exciting new window on the cosmos. For the first time we have both Dispersion Measure (DM) from distant sources and their red-shift. This gives us the opportunity to determine the average electron number density in intergalactic space and thus test New Tired Light predictions. Here, in an alternative cosmology, the universe is static and redshifts are produced by an interaction between photons and the electrons in the intergalactic medium. In a paper published in summer 2006 New Tired Light (NTL) predicted an average electron number density of n = 0.5 m-3. In 2016 a paper was published reporting that for the first time the DM of a FRB and the redshift of the host galaxy had been found. Using standard physics this confirmed the electron number density as n = 0.5 m-3. The prediction NTL made ten years earlier was proved to be correct. Using this measured electron number density enabled a definitive value of the Hubble constant to be made by New Tired Light and the value is 63 km/s per Mpc which compares well with currently accepted values. Importantly, since in NTL the redshift and dispersion are both due to the electrons in IG space, a relationship between DM’s and redshift can be predicted. NTL predicts that DM and LN(1 + z) will be directly proportional and related by the formula DM = mec/2hre(3.086 × 1022) where me, re are the rest mass and classical radius of the electron, c is the speed of light in a vacuum and h is the plank constant. The numerical term is to change units from pccm-3 to m-2. This reduces to DM = 2380LN(1 + z). Using data from five FRB’s this is tested and a linear relation is seen of the form DM = 1830LN(1 + z). The gradient of the plot from the observed data is within 23% of that predicted by NTL. Recently the Tolman Surface Brightness test has been applied to the HUDF and the results support a static universe whilst the possibility of two differing types of SN Ia whose distribution changes with distances means that tired light models can no longer be ruled out. Using SDF we know the distance to the Atlia galaxy cluster as 1.26 × 1024 m. With the average electron number density of n = 0.5 m-3 found from the Dispersion Measures of the FRB’s, from first principles, New Tired Light gives a calculated predicted redshift of 0.0086. This compares well with the value found spectroscopically of 0.0087—a difference of approximately 1%. It is shown that if the energy transferred to a recoiling electron when a UV photon of
References
[1]
Ashmore, L.E. (2006) Recoil between Photons and Electrons Leading to the Hubble Constant and CMB. Galilean Electrodynamics, 17, 53.
[2]
Keane, E.F., Johnston, S., Bhandari, S., Barr, E., Bhat, N.D.R., Burgay, M., et al. (2016) The Host Galaxy of a Fast Radio Burst. Nature, 530, 453–456.
http://dx.doi.org/10.1038/nature17140
[3]
Kiernein, J and Marmet, L. (2016) Private Emails.
[4]
http://www.astro.ucla.edu/~wright/CosmoCalc.html
[5]
Thornton, D., Thornton, D., Stappers, B., Bailes, M., Barsdell, B., Bates, S., Bhat, N.D.R., et al. (2013) A Population of Fast Radio Bursts at Cosmological Distances. Science, 341, 53-56.
http://dx.doi.org/10.1126/science.1236789
[6]
Aspel, D. (2001) Pulsars and Redshifts. http://arxiv.org/abs/gr-qc/0104025
[7]
Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275.
http://dx.doi.org/10.1142/S0218271809015904
[8]
Geller, M.J. and Peebles, J.E. (1972) Test of the Expanding Universe Postulate. Astrophysical Journal, 174, 1-5. http://dx.doi.org/10.1086/151462
[9]
Lubin, L.M. and Sandage, A. (2001) The Tolman Surface Brightness Test for the Reality of the Expansion. IV. A Measurement of the Tolman Signal and the Luminosity Evolution of Early-Type Galaxies. Astronomical Journal, 122, 1084-1103.
http://dx.doi.org/10.1086/322134
[10]
Lerner, E.J., Falomo, R. and Scarpa, R. (2014) UV Surface Brightness of Galaxies from the Local Universe to z ~ 5. International Journal of Modern Physics D, 23, Article ID: 1450058.
http://dx.doi.org/10.1142/s0218271814500588
[11]
Blondin, S., Davis, T.M., Krisciunas, K., Schmidt, B.P., Sollerman, J., Wood-Vasey, W.M. and 26 Co. Authors (2008) Time Dilation in Type Ia Supernova Spectra at High Redshift. The Astrophysical Journal, 682, 724-736. http://dx.doi.org/10.1086/589568
[12]
Philips, M.M. (1993) The Absolute Magnitudes of Type Ia Supernovae. The Astrophysical Journal, 413, L105-L108. http://dx.doi.org/10.1086/186970
[13]
Kasen, D. and Woosley, S.E. (2007) On the Origin of the Type Ia Supernova Width-Lumi- nosity Relation. The Astrophysical Journal, 656, 661-665. http://dx.doi.org/10.1086/510375
[14]
Hook, I.M., McMahon, R.G., Boyle, B.J. and Irwin, M.J. (1994) The Variability of Optically Selected Quasars. Monthly Notices of the Royal Astronomical Society, 268, 305-320.
http://dx.doi.org/10.1093/mnras/268.2.305
[15]
Cristiani, S., Trentini, S., La Franca, F., Aretxaga, I., Andreani, P., Vio, R., Gemmo, A., et al. (1996) The Optical Variability of QSOs. Astronomy and Astrophysics, 306, 395-407.
[16]
Hawkins, M.M. (2001) Time Dilation and Quasar Variability. The Astrophysical Journal, 553, L97-L100. http://dx.doi.org/10.1086/320683
[17]
Hawkins, M.M. https://arxiv.org/abs/1004.1824
[18]
Milne, P.A., Brown, P.J. and Narayan, G. (2015) The Changing Fractions of Type Ia Supernova NUV—Optical Subclasses with Redshift. The Astrophysical Journal, 803, 20.
Milne, P.A., Foley, R.J., Brown, P.J. and Narayan, G. (2015) The Changing Fractions of Type Ia Supernova Nuv-Optical Subclasses with Redshift. The Astrophysical Journal, 803, 20.
http://dx.doi.org/10.1088/0004-637X/803/1/20
[21]
Tonry, J.L., et al. (2001) The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances. The Astrophysical Journal, 546, 681-693. http://dx.doi.org/10.1086/318301
[22]
Blakeslee, J.P., et al. (1999) Distances from Surface Brightness Fluctuations. ASSL, 237, 181B.
[23]
Nakazawa, K., Makishima, K., Fukazawa, Y. and Tamura, T. (2000) ASCA Observations of a Near-By Cluster in Antlia. Publications of Astronomical Soc of Japan, 52, 623-630.
http://dx.doi.org/10.1093/pasj/52.4.623
[24]
Peebles, P.J.E., Schramm, D.N., Kron, R.G. and Yurner, E.L. (1991) The Case for the Relativistic Hot Big Bang Cosmology. Nature, 352, 769-776.
[25]
Nagano, M. and Watson, A.A. (2000) Observations and Implications of the Ultrahigh- Energy Cosmic Rays. Reviews of Modern Physics, 72, 689-732.
http://dx.doi.org/10.1103/RevModPhys.72.689
[26]
http://www.astro.ucla.edu/~wright/cosmo_01.htm
[27]
Ashmore, L.E. (2009) Hydrogen Cloud Separation as Direct Evidence of the Dynamics of the Universe. ASPC, 413, 3.
[28]
ESO. https://www.eso.org/public/images/eso0013g/
[29]
Ashmore, L.E. (2016) An Explanation of Redshifts in a Static Universe. In: Amoroso, R.L., Kauffman, L.H. and Rowlands, P., Eds., Unified Field Mechanics, World Scientific Publishers, Singapore, 456-462.
[30]
French, A.P. (1968) Special Relativity. Nelson, London, 128.
[31]
Feynman, R. (1990) QED—The Strange Story of Light and Matter. Penguin, London, 76.
Cairns, R.A., Ersfeld, B., Johnson, D., McDonald, D.C. and Ruhl, H. (1998) Nonlinear Harmonic Response in Laser-Plasma Interactions. Physica Scripta, T75, 99-103.
http://dx.doi.org/10.1238/Physica.Topical.075a00099
[36]
Zombeck, M.V. (2010) Handbook of Space Astronomy and Astrophysics. Cambridge University Press, Cambridge, 286. http://ads.harvard.edu/books/hsaa/idx.html
[37]
French, A.P. (1968) Special Relativity. Nelson, London, 176-182.
[38]
Henke, B.L., Gullikson, E.M. and Davis, J.C. (1993) X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50 - 30,000 eV, Z = 1 - 92. Atomic Data and Nuclear Data Tables, 54, 181-342. http://dx.doi.org/10.1006/adnd.1993.1013
[39]
Henke, B.L., Gullikson, E.M. and Davis, J.C. (2001) X-Ray Data Booklet. Chapter 1, LBNL/PUB-490, Rev. 2, Lawrence Berkeley National Laboratory, University of California, Berkeley, 44-52. http://www-xro.lbl.gov/optical_constants/intro.html
[40]
Hubbell, J.H., Veigele, W.J., Briggs, E.A., Brown, R.T., Cromer, D.T. and Howerton, R.J. (1975) Atomic Form Factors, Incoherent Scattering Functions, and Photon Cross Sections. Journal of Physical and Chemical Reference Data, 4, 471-538.
http://dx.doi.org/10.1063/1.555523
[41]
Zwicky, F. (1929) On the Red Shift of Spectral Lines through Interstellar Space. Proceedings of the National Academy of Sciences of the United States of America, 15, 773-785.
http://dx.doi.org/10.1073/pnas.15.10.773
[42]
Platonov, K.Y. and Fleishman, G.D. (2002) Transition Radiation in Media with Random Inhomogeneities. Physics-Uspekhi, 45, 235-291.
http://dx.doi.org/10.1070/PU2002v045n03ABEH000952