Competing Cosmology Models. Can Entropy Production Help Falsify Cyclic Models of Cosmology, or Variants along the Lines Discussed by Roger Penrose at the ICG Conference in Penn State, 2007?
In the inaugural ICG meeting, on August 11, 2007 at Penn State, Roger Penrose [1] gave a presentation about an alternative to cyclic cosmological models, which needs experimental tests for falsifiability. As discussed by Beckwith, in EJTP [2], Penrose brought up how wave equation, as simplified in flat space could lead to a rising vacuum nucleation field which would engender the pop up behavior as sought in most emergent field models of gravity. The scalar field pop up with certain qualifications is not so startling in itself. Now for the radical extension Penrose brought to bear. Penrose asserted in his ICG lecture that there was a good chance that there was no collapse in future events, but that matter would be eventually sucked up by “millions” of black holes, creating a clean-up of most interstellar matter. The issue to be brought up is how to come up with a mapping for re-combination of the black hole collected material, for a big bang, a topic which was not solved by Penrose.
References
[1]
Penrose, R. (2007) Conformal Cyclic Cosmology, Dark Matter, and Black Hole Evaporation. IGC Inaugural Conference, Penn State University, State College, 7-11 August 2007.
[2]
Beckwith, A.W. (2008) Penrose Model Potential, Compared with Coleman-Weinberg Potential for Early Universe Scalar Evolution. Electronic Journal of Theoretical Physics, 5, 95- 106.
[3]
Traschen, J. (2000) An Introduction to Black Hole Evaporation. Published in Mathematical Methods of Physics, Proceedings of the 1999 Londrina Winter School, World Scientific.
http://arxiv.org/abs/gr-qc/0010055
[4]
Hawking, S.W. (1992) Evaporation of Two-Dimensional Black Holes. Physical Review Letters, 69, 406-409. http://dx.doi.org/10.1103/PhysRevLett.69.406
[5]
Lloyd, S. (2002) Computational Capacity of the Universe. Physical Review Letters, 88, Article ID: 237901. http://dx.doi.org/10.1103/physrevlett.88.237901
[6]
Carroll, S. (2004) An Introduction to General Relativity Space Time and Geometry. Addison Wesley Publishing house, San Francisco.
[7]
Ng, Y.J. (2008) Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461. http://dx.doi.org/10.3390/e10040441
[8]
Ng, Y.J. (2008) Quantum Foam and Dark Energy. International Workshop on the Dark Side of the Universe.
http://ctp.bue.edu.eg/workshops/Talks/Monday/QuntumFoamAndDarkEnergy.pdf
[9]
Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Press Scientific, Singapore. http://dx.doi.org/10.1142/6730
[10]
Hunt, P. and Sakar, S. (2004) Multiple Inflation and the WMAP “Glitches”. Physical Review D, 70, Article ID: 103518. http://dx.doi.org/10.1103/physrevd.70.103518
[11]
Ruutu, V., Eltsov, V., Gill, A., Kibble, T., Krusius, M., Makhlin, Y.G., Placais, B., Volvik, G. and Wen, Z. (1996) Vortex Formation in Neutron-Irradiated 3He as an Analog of Cosmological Defect Formation. Nature, 382, 334-336. http://dx.doi.org/10.1038/382334a0
[12]
Hingsaw, G. (2007) Private Communications. IUCAA Meeting, Pune.
[13]
Beckwith, A.W. (2008) Toward a Viable Dark Matter Candidate without Invoking SUSY. Talk Given in IDM 2008, Sweden.
http://agenda.albanova.se/contributionDisplay.py?contribId=369&sessionId=254&confId=355
[14]
Beckwith, A.W. (2008) Several Routes for Determining Entropy Generation in the Early Universe, Links to CMBR Spectra, and Relic Neutrino Production. Proceedings of 43rd Rencontres de Moriond: Cosmology, La Thuile, 15-22 March 2008, 353-354.
[15]
Tcharkian, D.H. (2008) Presentation “Gravitating Yang-Mills Fields” at Bremen, August 29th, 2008, at the “Models of Gravity in Higher Dimensions”, August 25-29th, 2008. 418 WE-Heraeus-Seminar (To Appear in Proceedings Which the Seminar Will Put out in Later 2008-2009).
[16]
Penrose, R. (2006) Before the Big Bang: An Outrageous New Perspective and Its Implications for Particle Physics. Proceedings of EPAC, Edinburgh, 2759-2763.
[17]
Sanchez, N. (2007) 11th Paris Cosmology Colloquium, August 18th, 2007 with Respect to Sanchez, N. Understanding Inflation and Dark Energy in the Standard Model of the Universe, “D. Chalonge” School. http://chalonge.obspm.fr/Programme2007.html
[18]
Beckwith, A.W. (2011) Energy Content of Gravitation as a Way to Quantify Both Entropy and Information Generation in the Early Universe. Journal of Modern Physics, 2, 58-61.
http://dx.doi.org/10.4236/jmp.2011.22010
[19]
Hamber, H.W. (2009) Quantum Gravitation, the Feyman Path Integral Approach. Springer-Verlag, Heidelberg.
[20]
Beckwith, A.W., Li, F.Y., Yang, N., Dickau, J., Stephenson, G. and Glinka, L. (2011) Is Octonionic Gravity Relevant near the Planck Scale? http://vixra.org/abs/1101.0017
[21]
Li, F., Tang, M. and Shi, D. (2003) Electromagnetic Response of a Gaussian Beam to High Frequency Relic Gravitational Waves in Quintessential Inflationary Models. Physical Review D, 67, 104008. http://dx.doi.org/10.1103/PhysRevD.67.104008
[22]
Li, F. and Yang, N. (2009) Phase and Polarization State of High Frequency Gravitational Waves. Chinese Physics Letters, 26, 050402.
http://dx.doi.org/10.1088/0256-307X/26/5/050402
[23]
Crowell, L. (2011) Private Communication.
[24]
Beckwith, A.W. and Glinka, L. (2010) The Arrow of Time Problem: Answering if Time Flow Initially Favouritizes One Direction Blatantly. Prespacetime Journal, 1, 1358-1375.
http://vixra.org/abs/1010.0015
[25]
Verlinde, E.P. (2011) On the Origin of Gravity and the Laws of Newton. Journal of High Energy Physics, 2011, 29. ArXiv:1001.0785v1[hep-th]
http://dx.doi.org/10.1007/JHEP04(2011)029
[26]
Beckwith, A.W. (2010) Talk as Given in Chongqing University Department of Physics, 4 November 2010.
[27]
Beckwith, A.W. (2010) Applications of Euclidian Snyder Geometry to the Foundations of Space-Time Physics. Electronic Journal of Theoretical Physics, 7, 241-266.
[28]
Clive Woods, R., Baker Jr., R.M.L., Li, F.Y., Stephenson, G.V., Davis, E.W. and Beckwith, A.W. (2011) A New Theoretical Technique for the Measurement of High-Frequency Relic Gravitational Waves. Submitted for Possible Publication. http://vixra.org/abs/1010.0062
http://dx.doi.org/10.4236/jmp.2011.26060
[29]
Sakar, S. (2008) Private Communications to Beckwith.
[30]
Peiris, H.V., Komatsu, E., Verde, L., Spergel, D., Bennett, C., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S., Page, L., Tucker, G., Wollack, E. and Wright, E. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Inflation. The Astrophysical Journal Supplement Series, 148, 213-231.
http://dx.doi.org/10.1086/377228
[31]
Sakar, S. (2016) http://www-thphys.physics.ox.ac.uk/people/SubirSarkar/
[32]
Torrieri, G. and Mishustin, I. (2008) Instability of Boost-Invariant Hydrodynamics with a QCD Inspired Bulk Viscosity. Physical Review C, 78, 021901(R).
http://arxiv.org/abs/0805.0442
[33]
Asakawa, M., Bass, S.A. and Müller, B. (2006) Anomalous Viscosity of an Expanding Quark-Gluon Plasma. Physical Review Letters, 96, 252301.
http://dx.doi.org/10.1103/PhysRevLett.96.252301
[34]
Li, F.Y., Yang, N., Fang, Z.Y., Baker, R.M.L., Stephenson, G.V. and Wen, H. (2009) Signal Photon Flux and Background Noise in a Coupling Electromagnetic Detecting System for High-Frequency Gravitational Waves. Physical Review D, 80, 064013.
http://dx.doi.org/10.1103/physrevd.80.064013
[35]
http://quantumgravity.aei.mpg.de/
[36]
Smoot, G. (2007) 11th Paris Cosmology Colloquium, August 18th, 2007 with Respect to Smoot, G. CMB Observations and the Standard Model of the Universe, “D. Chalonge” School. http://chalonge.obspm.fr/Programme2007.html
[37]
Beckwith, A.W. (2007) Several Routes for Determining Entropy Generation in the Early Universe, Links to CMBR Spectra, and Relic Neutrino Production. 6th International Conference on Gravitation and Cosmology (ICGC-2007), Ganeshkhind, Pune, 17-21 December 2007, 1-18; Also Presented at KITP, UCSB.
http://online.itp.ucsb.edu/online/partcosmo_c08/beckwith/
[38]
Kolb, E. and Turner, S. (1994) The Early Universe. Westview Press, Chicago.
[39]
Corda, C. (2012) Primordial Gravity’s Breath. Electronic Journal of Theoretical Physics, 9, 1-10.http://arxiv.org/abs/1110.1772
[40]
Corda, C. (2008) Massive Gravitational Waves from the R2 Theory of Gravity: Production and Response of Interferometers. International Journal of Modern Physics A, 23, 1521- 1535. http://dx.doi.org/10.1142/S0217751X08038603
[41]
Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282.
http://arxiv.org/abs/0905.2502
http://dx.doi.org/10.1142/S0218271809015904
[42]
Beckwith, A. (2016) Gedanken Experiment Examining How Kinetic Energy Would Dominate Potential Energy, in Pre-Planckian Space-Time Physics, and Allow Us to Avoid the BICEP 2 Mistake. Journal of High Energy Physics, Gravitation and Cosmology, 2, 75-82.
http://dx.doi.org/10.4236/jhepgc.2016.21008
[43]
Gao, C. (2012) A Model of Nonsingular Universe. Entropy, 14, 1296-1305.
http://dx.doi.org/10.3390/e14071296
[44]
Abbott, B.P., et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, 061102. https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.116.061102
[45]
Abbott, B.P., et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016) GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 116, 241103.
http://dx.doi.org/10.1103/PhysRevLett.116.241103