The electromagnetic shift of energy levels of H-atom electrons is determined by calculating an electron coupling to the Gibbons-Hawking ectromagnetic field thermal bath. Energy shift of electrons in H-atom is determined in the framework of non-relativistic quantum mechanics.
References
[1]
Corda, Ch. (2015) Precise Model of Hawking Radiation from the Tunneling Mechanism. Classical and Quantum Gravity, 32, Article ID: 195007.
http://dx.doi.org/10.1088/0264-9381/32/19/195007
[2]
Corda, Ch. (2015) Quasi-Normal Modes: The “Electrons” of Blak Holes as “Gravitational Atoms”? Implications for the Black Hole Information Puzzle. Advances in High Energy Physics, 2015, Article ID: 867601. http://dx.doi.org/10.1155/2015/867601
[3]
Corda, Ch. (2015) Time Dependent Schrödinger Equation for Black Hole Evaporation: No Information Loss. Annals of Physics, 353, 71. http://dx.doi.org/10.1016/j.aop.2014.11.002
[4]
Planck, M. (1900) Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum. Verhandlungen der Deutschen Physikalischen Gesellschaft, 2, 237.
[5]
Planck, M. (1901) Ueber das Gesetz der Energieverteilung im Normalspectrum. Annals of Physics, 4, 553. http://dx.doi.org/10.1002/andp.19013090310
[6]
Schöpf, H.-G. (1978) Theorie der Wärmestrahlung in historisch-kritischer Darstellung. Alademie/Verlag, Berlin.
[7]
Einstein, A. (1917) Zur Quantentheorie der Strahlung. Physikalische Zeitschrift, 18, 121.
[8]
Akhiezer, A.I. and Berestetzkii, V.B. (1953) Quantum Electrodynamics. GITTL, Moscow.
[9]
Welton, Th. (1948) Some Observable Effects of the Quantum-Mechanical Fluctuations of the Electromagnetic Field. Physical Review, 74, 1157.
http://dx.doi.org/10.1103/PhysRev.74.1157
[10]
Bethe, H.A. (1947) The Electromagnetic Shift of Energy Levels. Physical Review, 72, 339.
http://dx.doi.org/10.1103/PhysRev.72.339
Isihara, A. (1971) Statistical Mechanics. Academic Press, Pittsburgh.
[13]
Rohlf, J.W. (1994) Modern Physics from α to Z0. John Wiley & Sons Ltd., Hoboken.
[14]
Sokolov, A.A., Loskutov, Y.M. and Ternov, I.M. (1962) Quantum Mechanics. State Pedago- gical Edition, Moscow. (In Russian)
[15]
Pardy, M. (1994) The Two-Body Potential at Finite Temperature. CERN.TH.7397/94.
[16]
Pardy, M. (1989) Finite-Temperature Cerenkov Radiation. Physics Letters A, 134, 357-359.
http://dx.doi.org/10.1016/0375-9601(89)90734-2
[17]
Pardy, M. (1989) Finite-Temperature Gravitational Cerenkov Radiation. International Journal of Theoretical Physics, 34, 951-959. http://dx.doi.org/10.1007/BF00674453
[18]
Dolan, L. and Jackiw, R. (1974) Symmetry Behavior at Finite Temperature. Physical Review D, 9, 3320-3341. http://dx.doi.org/10.1103/PhysRevD.9.3320
[19]
Weinberg, S. (1974) Gauge and Global Symmetries at High Temperature. Physical Review D, 9, 3357-3378. http://dx.doi.org/10.1103/PhysRevD.9.3357
[20]
Bernard. C.W. (1974) Feynman Rules for Gauge Theories at Finite Temperature. Physical Review D, 9, 3312-3320. http://dx.doi.org/10.1103/PhysRevD.9.3312
[21]
Donoghue, J.F., Holstein, B.R. and Robinett, R.W. (1985) Quantum Electrodynamics at Finite Temperature. Annals of Physics, 164, 233-276.
http://dx.doi.org/10.1016/0003-4916(85)90016-8
[22]
Partovi, H.M. (1994) QED Corrections to Plancks Radiation Law and Photon Thermo- dynamics. Physical Review D, 50, 1118-1124. http://dx.doi.org/10.1103/PhysRevD.50.1118
[23]
Johansson, A.E., Peressutti, G. and Skagerstam, B.S. (1986) Quantum Field Theory at Finite Temperature: Renormalization and Radiative Corrections. Nuclear Physics B, 278, 324-342.
http://dx.doi.org/10.1016/0550-3213(86)90216-6
[24]
Cox, P.H., Hellman, W.S. and Yildiz, A. (1984) Finite Temperature Corrections to Field Theory: Electron Mass, Magnetic Moment, and Vacuum Energy. Annals of Physics, 154, 211-228. http://dx.doi.org/10.1016/0003-4916(84)90143-X
[25]
Haroche, S. (2012) The Secrets of My Prizewinning Research. Nature, 490, 311.
http://dx.doi.org/10.1038/490311a