Linkage of Classical Mechanical (CM) Geometry (3 Dimensional) and Quantum Mechanical (QM) Geometry (2 Dimensional) via Hopf Mapping and Its Implications for Relic Gravitational Wave (GW) Power Production
Hopf mapping from 2 dimensions Quantum Mechanics (QM) to 3 dimensions Classical Mechanics (CM) is examined in terms of a formalism started by Feynman which has linkage to the (CM) equations of motion have linkage to the Serret-Frenet form (for differential equations). We argue that in doing so we may then link QM representations of qubits to a solved version of the rotating rod problem. Furthermore since a “generic” solid body rotation equivalent to the rotating rod problem has linkage to Gravitational Wave (GW) generation, as given by Lightman et al., it is a way to tie qubits (quantum information) to GW generation. We then make observations as to what the results mean in terms of QM initial states and the power of GW production from early universe conditions.
References
[1]
Kholodenko, A.L. (2013) Applications of Contact Geometry and Topology in Physics. World Scientific. http://dx.doi.org/10.1142/8514
[2]
Darabi, F. and Jalalzadeh, S. (2013) Cosmological Quantum Tunneling and the Holographic Principle. Theoretical and Mathematical Physics, 175, 710-716; Also See Much the Same Thing in http://arxiv.org/abs/1108.0682
http://dx.doi.org/10.1007/s11232-013-0056-7
[3]
Feynman, R., Verno, F. and Hellwarth, R. (1957) Geometrical Representation of the Schrodinger Equation for Solving Master Equation. Journal of Applied Physics, 28, 49-52.
http://dx.doi.org/10.1063/1.1722572
[4]
Feynman, R. (1966) The Feynman Lectures on Physics. Vol. 3, Adsdison-Wesley, Reading.
[5]
Lightman, A., Press, W., Price, R. and Teukolsky, S. (1979) Problem Book in Relativity and Gravitation. Princeton University Press, Princeton.
[6]
Maggiore, M. (2008) Gravitational Waves, Volume 1: Theory and Experiment. Oxford University Press, Oxford.
[7]
Valev, D. (2014) Estimation of the Total Mass and Energy of the Universe. Physics International, 5, 15-20. http://arxiv.org/pdf/1004.1035.pdf
[8]
Muller, R. and Lousto, C. (1995) Entanglement Entropy in Curved Spacetimes with Event Horizons. Physical Review D, 52, 4512-4517. arXIV: Gr-qc/9504049v1
Beckwith, A. (2015) How Graviton Power Values and a Graviton Count from the Electroweak Era, Give Strain and Heavy Gravity Values. In: Dumarchez, J., Fontaine, G., Klima, B. and Van, J.T.T., Eds., The Inaugural Confrence on ICISE “Windows to the Universe” under the Patronage of “Annee France-Vietnam 2013-2014” under the High Patronage of UNESCO, The Gioi Publishers, Hanoi, 411-412. http://vixra.org/abs/1308.0110
[11]
Padmanabhan, T. (2010) Gravitation, Foundations and Frontiers. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511807787
[12]
Ellis, G., Maartens, R. and Mac Callum, M. (2012) Relativistic Cosmology. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9781139014403
[13]
Borsten, G.L., Duff, M. and Levay, P. (2012) The Black Hole/Qubit Correspondence: An Up-to-Date Review. Classical and Quantum Gravity, 29, 224008.
http://dx.doi.org/10.1088/0264-9381/29/22/224008
[14]
Beckwith, A. (2013). http://vixra.org/abs/1304.0156 (Accepted for Publication in Journal for Applied Mathematics, SCIRP)
[15]
Abbott, B.P., et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, 061102. https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
[16]
Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282.
http://arxiv.org/abs/0905.2502
http://dx.doi.org/10.1142/s0218271809015904