全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Seismic Attenuation and Velocity Dispersion to Discriminate Gas Hydrates and Free Gas Zone, Makran Offshore, Pakistan

DOI: 10.4236/ijg.2016.78077, PP. 1020-1028

Keywords: Gas Hydrates, Seismic Attenuation, Velocity Dispersion, Makran Offshore, Seismic Attributes

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gas hydrates gained a remarkable attention as an unconventional energy resource recently. In order to interpret gas hydrates (part of fluid) and free gas saturated zone accurately, it is essential to implement new technique related to seismic attenuation and velocity dispersion.?P?wave attenuation and velocity dispersion in porous media made promising imprints for exploration of gas hydrates. The most prominent phenomenon for attenuation and velocity dispersion in porous media is wave induced fluid flow in which wave inhomogeneities are larger than pore size but smaller than wavelength. Numerical simulation technique is applied to analyze frequency dependent velocity dispersion and attenuation in gas hydrates and free gas layer in Makran offshore of Pakistan. Homogeneous and patchy distribution patterns of gas hydrates and free gas within pore spaces of host sediments at lower and higher frequency regime are considered. It is noted that the attenuation and velocity dispersion increase with the increase in gas hydrates saturation. The maximum attenuation is observed at 66% saturation of gas hydrates in the area under investigation. However, in case of water and gas mixture the maximum attenuation and velocity dispersion occur at low gas saturation (~15%). Therefore, based on our numerical simulation, velocity dispersion and attenuation can be used as seismic attributes to differentiate various gas saturations and gas hydrates saturation for Makran offshore area of Pakistan.

References

[1]  Brooks, J.M., Kennicutt, M.C. and Fay, R.R. (1992) Thermogenic Gas Hydrates in Gulf of Mexico. Science, 225, 409-411.
http://dx.doi.org/10.1126/science.225.4660.409
[2]  Carroll, J.J. (2003) Natural Gas Hydrates, a Guide to Engineers. Gulf Professional Publishing, Amsterdam.
[3]  Ginsburg, G.D., Guseynov, R.A. and Dadashev, A.A. (1992) Gas Hydrates of the Southern Caspian. International Geology Review, 42, 765-782.
http://dx.doi.org/10.1080/00206819209465635
[4]  Ecker, C., Dvorkin, J. and Nur, A. (1998) Sediments with Gas Hydrates: Internal Structure from Seismic AVO. Geophysics, 63, 1659-1669.
http://dx.doi.org/10.1190/1.1444462
[5]  Hovland, M. and Judd, A.G. (1988) Sea Bed Pock-Marks and Seepages, Impact on Geology. Graham and Trotman Ltd., London, 422-438.
[6]  Lowrie, A., Max, M.D., Hamiter, R., Lerche, I. and Bagirow, E. (1997) Hydrate Stability Zone Permanence along Dynamic Louisiana Offshore. Gulf Coast Association of Geological Societies Transactions, 47, 311-315.
[7]  Marl, R.G., Bryan, G.M. and Ewing, J.L. (1970) Structure of Blake Bahamas outer Ridge. Journal Geophysical Research, 75, 4539-4555.
http://dx.doi.org/10.1029/JC075i024p04539
[8]  Stoll, R.D., Ewing, J.I. and Bryan, G.M. (1971) Anomalous Wave Velocities in Sediments Containing Gas Hydrates. Journal of Geophysical Research, 84, 15101-15116.
http://dx.doi.org/10.1029/jb076i008p02090
[9]  Chand, S. and Minshull, T.A. (2004) The Effect of Hydrate Content on Seismic Attenuation: A Case Study for Mallik 2L-38 Well Data, Mackenzie Delta, Canada. Geophysical Research Letter, 31, 2-5.
http://dx.doi.org/10.1029/2004GL020292
[10]  Gei, D. and Carcione, J.M. (2003) Acoustic Properties of Sediments Saturated with Gas Hydrate, Free Gas and Water. Geophysical Prospecting, 51, 141-157.
http://dx.doi.org/10.1046/j.1365-2478.2003.00359.x
[11]  Pecher, I.A. and Holbrook, W.S. (2003) Seismic Methods for Detecting and Quantifying Marine Methanehydrate/Free Gas Reservoirs. Natural Gas Hydrate, Springer, 275-294.
[12]  Rossi, G., Gei, D., B?hm, G., Madrussani, G. and Carcione, J.M. (2007) Attenuation Tomography: An Application to Gas-Hydrate and Free-Gas Detection. Geophysics Prospect, 55, 655-669.
http://dx.doi.org/10.1111/j.1365-2478.2007.00646.x
[13]  Guerin, G. and Goldberg, D. (2002) Sonic Waveform Attenuation in Gas Hydrate-Bearing Sediments from the Mallik 2L-38 Research Well, Mackenzie Delta, Canada. Journal of Geophysical Research, 55, 107-110.
http://dx.doi.org/10.1029/2001jb000556
[14]  Bellefleur, G., Riedel, M., Brent, T., Wright, F. and Dallimore, S.R. (2007) Implication of Seismic Attenuation for Gas Hydrate Resource Characterization, Mallik, Mackenzie Delta, Canada. Journal of Geophysical Research, 112, B10311- B10311.
http://dx.doi.org/10.1029/2007jb004976
[15]  Matsushima, J. (2006) Seismic Wave Attenuation in Methane Hydrate-Bearing Sediments: Vertical Seismic Profiling Data from the Nankai Trough Exploratory Well, Offshore Tokai, Central Japan. Journal of Geophysical Research, 111, B10101-B10101.
http://dx.doi.org/10.1029/2005jb004031
[16]  Sain, K., Singh, A.K., Thakur, N.K. and Khanna, R. (2009) Seismic Quality Factor Observations Forgas-Hydrate- Bearing Sediments on the Western Margin of India. Marine Geophysical Research, 30, 137-145.
http://dx.doi.org/10.1007/s11001-009-9073-1
[17]  Li, C.H. and Liu, X. (2014) Analysis of P-Wave Attenuation in Hydrate-Bearing Sediments Based on Bisq Model. Geological Research.
[18]  Ehsan, I.M., Ahmed, N., Khalid, P., Liu, X.W. and Naeem, M. (2015) An Application of Rock Physics Modeling to Quantify the Seismic Response of Gas Hydrate-Bearing Sediments in Makranaccretionary Prism, Offshore, Pakistan. Geosciences Journal, 20, 321-330.
http://dx.doi.org/10.1007/s12303-015-0044-z
[19]  Schluter, H.U., Prexl, A., Gaedicke, C., Roeser, H., Reichert, C., Meyer, H. and Daniels, C. (2002) The Makranaccretionary Wedge: Sediment Thicknesses and Ages and the Origin of Mud Volcanoes. Marine Geology, 185, 219-232.
http://dx.doi.org/10.1016/S0025-3227(02)00192-5
[20]  Khalid, P. and Ahmed, N. (2016) Modulus Defect, Velocity Dispersion and Attenuation in Partially-Saturated Reservoirs of Jurassic Sandstone, Indus Basin, Pakistan. Studia Geophysica Geodetica, 60, 112-129.
http://dx.doi.org/10.1007/s11200-015-0804-2
[21]  Helgerud, M.B., Dvorkin, J. and Nur, A. (1999) Elastic Wave Velocity in Marine Sediments with Gas Hydrates. Geophysical Research Letter, 26, 2021-2024. http://dx.doi.org/10.1029/1999GL900421
[22]  Khalid, P., Broseta, D. and Nichita, D.V. (2014). A Modified Rock Physics Model for Analysis of Seismic Signatures of Low Gas-Saturated Rocks. Arabian Journal of Geosciences, 7, 3281-3295.
http://dx.doi.org/10.1007/s12517-013-1024-0
[23]  Wood, A.B. (1941) A Textbook of Sound. G. Bell and Sons.
[24]  Reuss, A. (1929) Berechnung der fliessgrense von mischkristallen auf grund der plastizitatbedingung fur einkristalle. Zeitschrift Fur Angewandte Mathematik Und Mechnik, 25, 49-58.
http://dx.doi.org/10.1002/zamm.19290090104
[25]  Gassmann, F. (1951) Uber die Elastizit a tporoserMedien. Vierteljahrsschriftder aturforschendenGesellschaft in Zurich, 96, 1-23.
[26]  Khalid, P. (2011) Effects on Seismic Properties of Thermo Elastic Relaxation and Liquid/Vapor Phase Transition. PhD Dissertation, Pau University France, Pau.
[27]  Hill, R. (1963) Elastic Properties of Reinforced Solids: Some Theoretical Principles. Journal of the Mechanics and Physics of Solids, 11, 357-372.
http://dx.doi.org/10.1016/0022-5096(63)90036-X
[28]  Gosh, R. and Sain, K. (2008) Effective Medium Modeling to Assess Gas Hydrate and Free-Gas Evident from the Velocity Structure in the Makran Accretionary Prism, Offshore Pakistan. Marine Geophysics, 29, 267-274.
http://dx.doi.org/10.1007/s11001-009-9062-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133