全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Harmonic Oscillator with Random Damping in Non-Markovian Thermal Bath

DOI: 10.4236/wjm.2016.68019, PP. 238-248

Keywords: Random Damping, Total Entropy, Non-Markovian Bath, Fluctuation Theorem, Additive Colored Noise

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we define the harmonic oscillator with random damping in non-Markovian thermal bath. This model represents new version of the random oscillators. In this side, we derive the overdamped harmonic oscillator with multiplicative colored noise and translate it into the additive colored noise by changing the variables. The overdamped harmonic oscillator is stochastic differential equation driving by colored noise. We derive the change in the total entropy production (CTEP) of the model and calculate the mean and variance. We show the fluctuation theorem (FT) which is invalid at any order in the time correlation. The problem of the deriving of the CTEP is studied in two different examples of the harmonic potential. Finally, we give the conclusion and plan for future works.

References

[1]  West, B. and Seshadri, V. (1981) Model of Gravity Wave Growth Due to Fluctuations in the Air-Sea Coupling Parameter. Journal of Geophysical Research, 86, 4293.
http://dx.doi.org/10.1029/JC086iC05p04293
[2]  Gitterman, M. (2003) Phase Transitions in Moving Systems. Physical Review E, 70, Article ID: 036116.
http://dx.doi.org/10.1103/PhysRevE.70.036116
[3]  Onuki, A. (1997) Phase Transitions of Fluids in Shear Flow. Journal of Physics: Condensed Matter, 9, 6119.
http://dx.doi.org/10.1088/0953-8984/9/29/001
[4]  Chomaz, J.M. and Couairon, A. (1999) Against the Wind. Physics of Fluids, 11, 2977.
http://dx.doi.org/10.1063/1.870157
[5]  Hestol, F. and Libchaber, A. (1985) Unidirectional Crystal Growth and Crystal Anisotropy. Physica Scripta, T9, 126.
[6]  Saul, A. and Showalter, K. (1985) Oscillations and Traveling Waves in Chemical Systems. In: Field, R.J. and Burger, M., Eds., Propagating Rraction-Diffusion Fronts, Wiley, New York, 419-440.
[7]  Gitterman, M., Ya Shapiro, B. and Shapiro, I. (2002) Phase Transitions in Vortex Matter Driven by Bias Current. Physical Review B, 65, Article ID: 174510.
http://dx.doi.org/10.1103/PhysRevB.65.174510
[8]  Fronzoni, L., Grigolini, P., Hanggi, P., Moss, F., Mannella, R. and McClintock, P.V.E. (1986) Bistable Oscillator Dynamics by Nonwhite Noise. Physical Review A, 33, 3320.
http://dx.doi.org/10.1103/PhysRevA.33.3320
[9]  Kosek-Dygas, M., Matkowsky, B. and Schuss, Z. (1988) Colored Noise in Dynamical Systems. SIAM Journal on Applied Mathematics, 48, 425.
http://dx.doi.org/10.1137/0148023
[10]  Mannella, R., McClintock, P.V.E. and Moss, F. (1987) Spectral Distribution of a Double-Well Duffing Oscillator Subject to a Random Force. Europhysics Letters, 4, 511. http://dx.doi.org/10.1209/0295-5075/4/5/001
[11]  Hanggi, P. and Jung, P. (1995) Colored Noise in Dynamical Systems. Advances in Chemical Physics, 89, 239.
http://dx.doi.org/10.1002/9780470141489.ch4
[12]  Gitterman, M. (2010) New Stochastic Equation for a Harmonic Oscillator: Brownian Motion with Adhesion. Journal of Physics: Conference Series, 248, Article ID: 012049.
http://dx.doi.org/10.1088/1742-6596/248/1/012049
[13]  Vicenc, M., Daniel, C. and Werner, H. (2013) Stationary Energy Probability Density of Oscillators Driven by a Random External Force. Physical Review E, 87, Article ID: 062132.
http://dx.doi.org/10.1103/PhysRevE.87.062132
[14]  Saha, A., Lahiri, S. and Jayannavar, A.M. (2009) Entropy Production Theorems and Some Consequences. Physical Review E, 80, Article ID: 011117.
http://dx.doi.org/10.1103/PhysRevE.80.011117
[15]  Jimnez-Aquino, J.I. (2010) Entropy Production Theorem for a Charged Particle in an Electromagnetic Field. Physical Review E, 82, Article ID: 051118.
http://dx.doi.org/10.1103/PhysRevE.82.051118
[16]  Seifert, U. (2008) Stochastic Thermodynamics: Principles and Perspectives. European Physical Journal B, 64, 423-431.
http://dx.doi.org/10.1140/epjb/e2008-00001-9
[17]  Seifert, U. (2005) Entropy Production along a Stochastic Trajectory and an Integral Fluctuation Theorem. Physical Review Letters, 95, Article ID: 040602.
http://dx.doi.org/10.1103/physrevlett.95.040602
[18]  Jarzynski, C. (1997) Equilibrium Free-Energy Differences from Nonequilibrium Measurements: A Master-Equation Approach. Physical Review E, 56, 5018-5035.
http://dx.doi.org/10.1103/PhysRevE.56.5018
[19]  Sagawa, T. and Ueda, M. (2010) Generalized Jarzynski Equality under Nonequilibrium Feedback Control. Physical Review Letters, 104, Article ID: 090602.
http://dx.doi.org/10.1103/physrevlett.104.090602
[20]  Crooks, G.E. (1999) Entropy Production Fluctuation Theorem and the Nonequilibrium Work Relation for Free Energy Differences. Physical Review E, 60, 2721-2726.
http://dx.doi.org/10.1103/PhysRevE.60.2721
[21]  Aki, K., Tapio, A.N. and Jukka, P. (2015) Entropy Production in a Non-Markovian Environment. Physical Review E, 92, Article ID: 012107.
[22]  Velasco, R.M., Scherer Garca-Coln, L. and Uribe, F.J. (2011) Entropy Production: Its Role in Non-Equilibrium Thermodynamics. Entropy, 13, 82-116.
http://dx.doi.org/10.3390/e13010082
[23]  Ford, J., Laker, P.L. and Charlesworth, J. (2015) Stochastic Entropy Production Arising from Nonstationary Thermal Transport. Physical Review E, 92, Article ID: 042108.
http://dx.doi.org/10.1103/physreve.92.042108
[24]  Jimnez-Aquino, J.I. and Velasco, R.M. (2014) The Entropy Production Distribution in Non-Markovian Thermal Baths. Entropy, 16, 1917-1930.
http://dx.doi.org/10.3390/e16041917
[25]  Hänggi, P. and Peter, J. (1995) Colored Noise Dynamic. John Wiley and Sons Inc., Hoboken.
[26]  Risken, H. (1984) The Fokker Planck Equation. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-96807-5
[27]  Seifert, U. (2012) Stochastic Thermodynamics, Fluctuation Theorems and Molecular Machines. Reports on Progress in Physics, 75, 12601.
http://dx.doi.org/10.1088/0034-4885/75/12/126001
[28]  Sekimoto, K. (1998) Langevin Equation and Thermodynamics. Progress of Theoretical Physics, 130, 17-27.
http://dx.doi.org/10.1143/PTPS.130.17
[29]  Jarzynski, C. (2011) Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale. Annual Review of Condensed Matter Physics, 2, 329-351.
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140506

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133