全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Generalized Ratio-Cum-Product Estimators for Two-Phase Sampling Using Multi-Auxiliary Variables

DOI: 10.4236/ojs.2016.64052, PP. 616-627

Keywords: Ratio-Cum-Product Estimator, Multiple Auxiliary Variables, Two-Phase Sampling

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we have proposed estimators of finite population mean using generalized Ratio- cum-product estimator for two-Phase sampling using multi-auxiliary variables under full, partial and no information cases and investigated their finite sample properties. An empirical study is given to compare the performance of the proposed estimators with the existing estimators that utilize auxiliary variable(s) for finite population mean. It has been found that the generalized Ra-tio-cum-product estimator in full information case using multiple auxiliary variables is more efficient than mean per unit, ratio and product estimator using one auxiliary variable, ratio and product estimator using multiple auxiliary variable and ratio-cum-product estimators in both partial and no information case in two phase sampling. A generalized Ratio-cum-product estimator in partial information case is more efficient than Generalized Ratio-cum-product estimator in No information case.

References

[1]  Neyman, J. (1938) Contributions to the Theory of Sampling Human Populations. Journal of the American Statistical Association, 33, 101-116.
http://dx.doi.org/10.1080/01621459.1938.10503378
[2]  Cochran, W.G. (1940) The Estimation of the Yields of the Cereal Experiments by Sampling for the Ratio of Grain to Total Produce. Journal of Agricultural Science, 30, 262-275.
http://dx.doi.org/10.1017/S0021859600048012
[3]  Hansen, M.H. and Hurwitz, W.N. (1943) On the Theory of Sampling from Finite Populations. The Annals of Mathematical Statistics, 14, 333-362.
http://dx.doi.org/10.1214/aoms/1177731356
[4]  Olkin, I. (1958) Multivariate Ratio Estimation for Finite Populations. Biometrika, 45, 154-165.
http://dx.doi.org/10.1093/biomet/45.1-2.154
[5]  Murthy, M.N. (1964) Product Method of Estimation. Sankhya, 26, 294-307.
[6]  Robson, D.S. (1952) Multiple Sampling of Attributes. Journal of the American Statistical Association, 47, 203-215.
http://dx.doi.org/10.1080/01621459.1952.10501164
[7]  Singh, M.P. (1967) Multivariate Product Method of Estimation for Finite Populations. Journal of the Indian Society of Agricultural Statistics, 31, 375-378.
[8]  Raj, D. (1965) On a Method of Using Multi-Auxiliary Information in Sample Surveys. Journal of the American Statistical Association, 60, 154-165.
http://dx.doi.org/10.1080/01621459.1965.10480789
[9]  Singh, M.P. (1967b) Ratio Cum Product Method of Estimation. Metrika, 12, 34-43.
http://dx.doi.org/10.1007/BF02613481
[10]  John, S. (1969) On Multivariate Ratio and Product Estimators. Biometrika, 56, 533-536.
http://dx.doi.org/10.1093/biomet/56.3.533
[11]  Srivastava, S.K. (1971) A Generalized Estimator for the Mean of a Finite Population Using Multi-Auxiliary Information. Journal of the American Statistical Association, 66, 404-407.
http://dx.doi.org/10.1080/01621459.1971.10482277
[12]  Robson, D.S. (1952) Multiple Sampling of Attributes, Journal of the American Statistical Association, 47, 203-215.
http://dx.doi.org/10.1080/01621459.1952.10501164
[13]  Ahmad, Z. (2007) Generalized Multivariate Ratio and Regression Estimators for Multi-Phase Sampling. Ph.D. thesis submitted to National College of Business Administration & Economics Lahore 40E-I, Gulberg III, Lahore, Pakistan.
[14]  Samiuddin, M. and Hanif, M. (2007) Estimation of Population Mean in Single and Two Phase Sampling with or without Additional Information. Pakistan Journal of Statistics, 23, 99-118.
[15]  Arora, S. and Bansi, Lal. (1989) New Mathematical Statistics. Satya Prakashan, New Delhi.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133