Paraconsistent logic (PL) is a non-classical logic that accepts contradiction in its foundations. It can be represented in the form of paraconsistent annotated logic with annotation of two values (PAL2v). When used to model quantum phenomena, PAL2v is called paraquantum logic (PQL). In this work, the concept of PQL is applied to create a logical model presenting the fundamental principles of quantum mechanics that support particle-wave theory. This study uses the well-known Young’s double-slit experiment, wherein quantum phenomena appear when a monochromatic light beam passes through the two slits. We focused on a reference point located between the slits, where we observed the effects of two types of wave interferences in a region defined as a two-wave region (2W region). Considering that the effect in this 2W region is very similar to that studied by Huygens, we adopt a paraquantum logical model in which a particle (or quantum) is represented by two wave functions. The two wave functions result in four State Vectors (Ket, Bra,,) in the PQL Lattice that express the symmetry and the entanglement of Quantum Mechanics. The constructed model adapts well to the quantum phenomena, is strongly consistent, and can be considered as an innovative form of analysis in the field of quantum mechanics. Based on this model, we present in two parts (Part I and Part II) the comparative analysis of values found in SchrÖdinger’s equation and probabilistic models of wave-particle theory using Bonferroni inequality.
References
[1]
Faraday, M. (1831) On the Forms and States of Uids on Vibrating Elastic Surfaces. Philosophical Transactions of the Royal Society London, 52, 299-340. http://dx.doi.org/10.1098/rstl.1831.0018
[2]
Barr, E.S. (1963) Men and Milestones in Optics II. Thomas Young. Applied Optics, 2, 639-647. http://dx.doi.org/10.1364/AO.2.000639
[3]
Griffiths, D. (1995) Introduction to Quantum Mechanics. Prentice Hall, Upper Saddle River, New Jersey.
Da Costa, N.C.A. (1974) On the Theory of Inconsistent Formal Systems Notre Dame. Journal of Formal Logic, 15, 497-510. http://dx.doi.org/10.1305/ndjfl/1093891487
[6]
Blair, A.H. and Subrahmanian, V.S. (1987) Paraconsistent Logic Programming. 7th Conference on Foundations of Software Technology and Theoretical Computer Science, Pune, 17-19 December 1987, 340-360. http://dx.doi.org/10.1007/3-540-18625-5_59
[7]
Da Costa, N.C.A., Subrahmanian, V.S. and Vago, C. (1991) The Paraconsistent Logic PJ. Mathematical Logic Quarterly, 37, 139-148. http://dx.doi.org/10.1002/malq.19910370903
[8]
Da Silva Fiho, J.I., Lambert-Torres, G. and Abe, J.M. (2010) Uncertainty Treatment Using Paraconsistent Logic: Introducing Paraconsistent Artificial Neural Networks. IOS Press, Amsterdam, 328.
[9]
Qureshi, T. (2012) Modified Two-Slit Experiments and Complementarity. Journal of Quantum Information Science, 2, 35-40. http://dx.doi.org/10.4236/jqis.2012.22007
[10]
Da Silva Filho, J.I. (2011) Algorithms Based on Paraconsistent Annotated Logic for Applications in Expert Systems. In: Segura, J.M. and Reiter A.C., Eds., Expert System Software: Engineering, Advantages and Applications, Nova Science Publishers, Hauppauge, 1-40.
[11]
Da Silva Filho, J.I. (2014) An Introduction to Paraconsistent Integral Differential Calculus: With Application Examples. Applied Mathematics, 5, 949-962. http://dx.doi.org/10.4236/am.2014.56090
[12]
Da Silva Filho, J.I. (2011) Paraconsistent Annotated Logic in Analysis of Physical Systems: Introducing the Paraquantum Factor of Quantization hψ. Journal of Modern Physics, 2, 1397-1409. http://dx.doi.org/10.4236/jmp.2011.211172
[13]
Da Silva Filho, J.I. (2011) Analysis of Physical Systems with Paraconsistent Annotated Logic: Introducing the Paraquantum Gamma Factor γψ. Journal of Modern Physics, 2, 1455-1469. http://dx.doi.org/10.4236/jmp.2011.212180
[14]
Da Silva Filho, J.I. (2012) Analysis of the Spectral Line Emissions of the Hydrogen Atom with Paraquantum. Journal of Modern Physics, 3, 233-254. http://dx.doi.org/10.4236/jmp.2012.33033
[15]
Da Silva Filho, J.I. (2012) An Introductory Study of the Hydrogen Atom with Paraquantum Logic. Journal of Modern Physics, 3, 312-333. http://dx.doi.org/10.4236/jmp.2012.34044
[16]
Tipler, P.A. and Llewellyn, R.A. (2007) A Modern Physics. 5th Edition, W. H. Freeman and Company, New York.
[17]
Mckelvey, J.P. and Grotch, H. (1978) Physics for Science and Engineering. Harper and Row, Publisher, Inc., New York, London, 426 p.
[18]
Peres, A. (1993) Quantum Theory: Concepts and Method. Kluwer Academic Publishers, Dordrecht, The Netherland.
[19]
Tipler, P.A. and Tosca, G.M. (2007) Physics for Scientists. 6th Edition, W. H. Freeman and Company, New York.
[20]
Ference Jr., M., Lemon, H.B. and Stephenson, R.J. (1956) Analytical Experimental Physics 2nd Edition, University of Chicago Press, Chicago, USA.
[21]
Bernstein, J., Fishbane, P.M. and Gasiorowicz, S.G. (2000) Modern Physics. Prentice-Hall, Upper Saddle River, New Jersey, 624 p.
[22]
Feynman, R.P., Leighton, R.B. and Sands, M. (1965) The Feynman Lectures on Physics. Addison-Wesley, Reading, Massachusetts-London.
[23]
SchrÖdinger, E. (1926) An Undulatory Theory of the Mechanics of Atoms and Molecules. The Physical Review, 28, 1049-1070. http://dx.doi.org/10.1103/PhysRev.28.1049
[24]
Dirac, P.A.M. (1958) The Principles of Quantum Mechanics. 4th Edition, Oxford University Press, Oxford, UK.
[25]
Narasimhachar, V., Poostindouz, A. and Gour, G. (2016) Uncertainty, Joint Uncertainty, and the Quantum Uncertainty Principle. New Journal of Physics, 18, Article ID: 033019. http://dx.doi.org/10.1088/1367-2630/18/3/033019
[26]
Dammeier, L., Schwonnek, R. and Werner, R.F. (2015) Uncertainty Relations for Angular Momentum. New Journal of Physics, 17, Article ID: 093046. http://dx.doi.org/10.1088/1367-2630/17/9/093046
[27]
Zhang, W.R. (2016) G-CPT Symmetry of Quantum Emergence and Submergence—An Information Conservational Multiagent Cellular Automata Unification of CPT Symmetry and CP Violation for Equilibrium-Based Many-World Causal Analysis of Quantum Coherence and Decoherence. Journal of Quantum Information Science, 6, 62-97. http://dx.doi.org/10.4236/jqis.2016.62008