全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Bi3+ Ion Substitution on Magnetic Properties of Cobalt Nano Ferrites Prepared by Sol-Gel Combustion Method

DOI: 10.4236/snl.2016.63004, PP. 37-44

Keywords: Bi-Co Nano Ferrites, Sol-Gel Combustion Method, TEM and VSM

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bismuth substituted cobalt nano ferrites with the chemical composition Co Bix Fe2-x O4 (x = 0.00, 0.05, 0.10, 0.15, 0.20 & 0.25) were prepared by sol-gel combustion method. The phase identification of prepared samples is characterised by X-ray powder diffraction (XRD) method, which confirms the formation of a single phase fcc spinal structure. The mean crystallite sizes of all prepared samples were obtained within the range of 21 (±5) nm. Transmission Electron Microscopy (TEM) images also confirmed the crystallite size of all the synthesised samples was in nano range. With the effect of Bi3+ ion substitution on spinal cobalt ferrite, the magnetic properties were investigated by using Vibration Sample Magnetometer (VSM). The obtained hysteresis (M-H) curves of all the samples were analysed under the applied magnetic field of range ± 10 K Oe at 300 K. The magnetic properties such as saturation magnetisation (Ms), remnant magnetization (Mr) and coercivity (Hc) values are tabulated, which show a decrease in trend as the bismuth ion concentration increases. This is due to the addition of Bi3+ ion in the place of Fe3+ ion (octahedral site) and hence the Bi3+-Fe3+ ion interaction predominates as compared with the Fe2+-Fe3+ ion interaction. The data obtained from magnetic studies, the variation among the magnetic properties have been investigated for all the prepared samples.

References

[1]  Slunkhe, A.B., Khot, V.M., Phadatare, M.R., et al. (2014) Low Temperature Combustion Synthesis and Magnetostructural Properties of Co-Mn Nanoferrites. Journal of Magnetic Materials, 352, 91-98.
http://dx.doi.org/10.1016/j.jmmm.2013.09.020
[2]  Zhao, D., Wu, X., Guan, H. and Han, E. (2007) Study on Super Critical Hydrothermal Synthesis of CoFe2O4 Nano Particles. Journal of Super Critical Fluids, 42, 226-233.
http://dx.doi.org/10.1016/j.supflu.2007.03.004
[3]  Zhang, Y., Liu, Y., Fei, C., Yang, Z., Lu, Z., Xiong, R., Yin, D. and Shi, J. (2010) The Temperature Dependence of Magnetic Properties for Cobalt Ferrite Nano Particles by the Hydrothermal Method. Journal of Applied Physics, 108, Article IA: 084312.
http://dx.doi.org/10.1063/1.3499289
[4]  Biswal, D., Peeples, B.N., Peeples, C. and Pradhan, A.K. (2013) Tuning of Magnetic Properties in Cobalt Ferrite by Varying Fe+2 and Co+2 Molar Ratios. Journal of Magnetism and Magnetic Materials, 345, 1-6.
http://dx.doi.org/10.1016/j.jmmm.2013.05.052
[5]  Kuckelhaus, S., Reis, S.C., Carniero, M.F., Todesco, A.C., Oliveira, D.M., Lima, E.C., Morais, P.C., Azevedo, R.B. and Lacava, Z.G.M. (2004) In Vivo Investigation of Cobalt Ferrite Based Magnetic Fluid and Magnetoliposomes Using Morphological Tests. Journal of Magnetism and Magnetic Materials, 2402, 272.
[6]  Tung, L.D., Kolesnichenko, V.L., Caruntu, D., Chou, N.H., O’Connor, C.J. and Spinu, C.J.L. (2003) Magnetic Properties of Ultrafine Cobalt Ferrite Particles. Journal of Applied Physics, 93, 7486.
http://dx.doi.org/10.1063/1.1540145
[7]  Hanh, N., Quy, O.K., Thuy, N.P., Tung, L.D. and Spinu, L. (2003) Synthesis of Cobalt Ferrite Nanocrystallites by the Forced Hydrolysis Method and Investigation of Their Magnetic Properties. Physica B: Condensed Matter, 327, 382- 384.
http://dx.doi.org/10.1016/S0921-4526(02)01750-7
[8]  Amighian, J., Mozaffari, M. and Nasr, B. (2006) Preparation of Nano-Sized Manganese Ferrite (Mn-Fe2O4) via Coprecipitation Method. Journal of Solid State Physics, 3, 3188-3192.
[9]  Meenakshisundaram, A., Gunasekaran, N. and Srinivasan, V. (1982) Distribution of Metal Ions in Transition Metal Manganites AMn2O4 (A: Co, Ni, Cu, or Zn). Physica Status Solidi(a), 69, K15-K19.
http://dx.doi.org/10.1002/pssa.2210690149
[10]  Pallai, V. and Shah, D.O. (1996) Synthesis of High-Coercivity Cobalt Ferrite Particles Using Water-in-Oil Microemulsions. Journal of Magnetism and Magnetic Materials, 163, 243-248.
http://dx.doi.org/10.1016/S0304-8853(96)00280-6
[11]  Skomski, R. (2003) Nanomagnetics. Journal of Physics: Condensed Matter, 15, R841-R896.
http://dx.doi.org/10.1088/0953-8984/15/20/202
[12]  Shenoy, S.D., Joy, P.A., Anantharaman, M.R. and Magn, J. (2004) Effect of Mechanical Milling on the Structural, Magnetic and Dielectric Properties of Coprecipitated Ultrafine Zinc Ferrite. Journal of Magnetism and Magnetic Materials, 269, 217-226.
http://dx.doi.org/10.1016/S0304-8853(03)00596-1
[13]  Jiang, J.Z., Wynn, P., Morup, S., Okada, T. and Berry, F.J. (1999) Magnetic Structure Evolution in Mechanically Milled Nanostructured ZnFe2O4 Particles. Nanostructured Materials, 12, 737-740.
http://dx.doi.org/10.1016/S0965-9773(99)00228-7
[14]  Atif, M., Hasanain, S.K. and Nadeem, M. (2006) Magnetization of Slo-Gel Prepared Zinc Ferrite Nano Particles. Journal of Science Communication, 138, 416-421.
[15]  Hamdeh, H.H., Ho, J.C., Oliver, S.A., Willey, R.J., Oliveri, G. and Busca, G. (1997) Magnetic Properties of Partially-Inverted Zinc Ferrite Aerogel Powders. Journal of Applied Physics, 81, 1851-1858.
http://dx.doi.org/10.1063/1.364068
[16]  Yu, S.H., Fujino, T. and Yoshimura, M. (2003) Hydrothermal Synthesis of ZnFe2O4 Ultrafine Particles with High Magnetization. Journal of Magnetism and Magnetic Materials, 256, 420-424.
http://dx.doi.org/10.1016/S0304-8853(02)00977-0
[17]  Naseri, M.G., Saion, E.B. and Hashim, M. (2011) Synthesis and Characterization of Zinc Ferrite Nanoparticles by a Thermal Treatment Method. Solid State Communications, 151, 1031-1035.
http://dx.doi.org/10.1016/j.ssc.2011.04.018
[18]  Pallai, V. and Shah, D.O. (1996) Synthesis of High-Coercivity Cobalt Ferrite Particles Using Water-in-Oil Microemulsions. Journal of Magnetism and Magnetic Materials, 163, 243-248.
http://dx.doi.org/10.1016/S0304-8853(96)00280-6
[19]  Brinker, C.J. and Scherer, G.W. (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego.
[20]  Bensebaa, F., Zavaliche, F., L’Ecuyer, P., Cochrane, R.W. and Veres, T. (2004) Microwave Synthesis and Characterization of Co-Ferrite Nanoparticles. Journal of Colloid and Interface Science, 277, 104-110.
http://dx.doi.org/10.1016/j.jcis.2004.04.016
[21]  Nasr Isfahani, M.J. and Fesharaki, M.J. (2013) Magnetic Behavior of Nickel-Bismuth Ferrite Synthesized by a Combined Sol-Gel/Thermal Method. Ceramics International, 39, 1163-1167.
http://dx.doi.org/10.1016/j.ceramint.2012.07.040
[22]  Srinivas, V., Raghavender, A.T. and Vijaya Kumar, K. (2016) Effect of Ba Substitution on the Structural and Magnetic Properties of BiFeO3. World Journal of Nano Science and Engineering, 6, 38-44.
http://dx.doi.org/10.4236/wjnse.2016.61004
[23]  Arulmurugan, R., Jeyadevan, B., Vaidyanathan, G. and Sendhilnathan, S. (2005) Effect of Zinc Substitution on Co-Zn and Mn-Zn Ferrite Nanoparticles Prepared by Co-Precipitation. Journal of Magnetism and Magnetic Materials, 288, 470-477.
http://dx.doi.org/10.1016/j.jmmm.2004.09.138
[24]  Maaz. K. and Mumtaz. A. (2007) Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route. Journal of Magnetism and Magnetic Materials, 308, 289-295.
http://dx.doi.org/10.1016/j.jmmm.2006.06.003
[25]  Singhal, S., Jauhar, S., Lakshmi, N. and Bansal, S. (2013) Mn3+ Substituted Co-Cd Ferrites, CoCd0.4MnxFe1.6﹣xO4 (0.1 ≤ x ≤ 0.6): Cation Distribution, Structural, Magnetic and Electrical Properties. Journal of Molecular Structure, 1038, 45-51.
http://dx.doi.org/10.1016/j.molstruc.2013.01.020
[26]  Miller, A. (1995) Journal of Applied Physics, 30, 245.
[27]  Singhal, S. and Jauhar, S. (2012) Investigation of Structural, Magnetic, Electrical and Optical Properties of Chromium Substituted Cobalt Ferrites (CoCrxFe2﹣xO4, 0 ≤ x ≤ 1) Synthesized Using Sol Gel Auto Combustion Method. Journal of Molecular Structure, 1012, 182-188.
http://dx.doi.org/10.1016/j.molstruc.2011.12.035
[28]  Singhal, S., Barthwal, S.K. and Chandra, K. (2006) XRD, Magnetic and Mossbauer Spectral Studies of Nano Size Aluminum Substituted Cobalt Ferrites (CoAlxFe2﹣xO4). Journal of Magnetism and Magnetic Materials, 306, 233-340.
http://dx.doi.org/10.1016/j.jmmm.2006.03.023
[29]  Bhukal, S., Namgyal, T., Mor, S., Bansal, S. and Singhal, S. (2012) Structural, Electrical, Optical and Magnetic Properties of Chromium Substituted Co-Zn Nanoferrites Co0.6Zn0.4CrxFe2﹣xO4 (0 ≤ x ≤ 1.0) Prepared via Sol-Gel Auto-Combustion Method. Journal of Molecular Structure, 1012, 162-167.
http://dx.doi.org/10.1016/j.molstruc.2011.12.019
[30]  Smart, J.S. (1955) The Néel Theory of Ferrimagnetism. American Journal of Physics, 23, 356-370.
http://dx.doi.org/10.1119/1.1934006
[31]  Gul, I.H., Abbasi, A.Z., Amin, F., Rehman, M.A. and Maqsood, A. (2007) Structural, Magnetic and Electrical Properties of Co1﹣xZnxFe2O4 Synthesized by Co-Precipitation Method. Journal of Magnetism and Magnetic Materials, 311, 494-499.
http://dx.doi.org/10.1016/j.jmmm.2006.08.005
[32]  Bueno. A.R, Gregori. I.M. and Nobrega. M.C.S. (2007) Effect of Mn Substitution on the Microstructure and Magnetic Properties of Ni0.50﹣xZn0.50﹣xMn2xFe2O4 Ferrite Prepared by the Citrate-Nitrate Precursor Method. Materials Chemistry and Physics, 105, 229-233.
http://dx.doi.org/10.1016/j.matchemphys.2007.04.047
[33]  Raut, A.V., Barkule, R.S., Shengule, D.R. and Jadhav, K.M. (2014) Synthesis, Structural Investigation and Magnetic Properties of Zn2+ Substituted Cobalt Ferrite Nanoparticles Prepared by the Sol-Gel Auto-Combustion Technique. Journal of Magnetism and Magnetic Materials, 358, 87-92.
http://dx.doi.org/10.1016/j.jmmm.2014.01.039
[34]  Berkowwitz, A.E. and Kneller, E. (1654) Magnetism and Metallurgy. Vol. 1, Academic Press, New York, 295.
[35]  Ibusuki, T., Kojima, S., Kitakami, O. and Shimada, Y. (2001) Magnetic Anisotropy and Behaviors of Fe Nanoparticles. IEEE Transactions on Magnetics, 37, 2223-2225.
http://dx.doi.org/10.1109/20.951130

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133