全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Coupled IEEE 802.11ac and TCP Goodput Improvement Using Aggregation and Reverse Direction

DOI: 10.4236/wsn.2016.87011, PP. 107-136

Keywords: 802.11ac, TCP, Aggregation, Reverse Direction, Goodput

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper suggests a new model for the transmission of Transmission Control Protocol (TCP) traffic over IEEE 802.11 using the new features of IEEE 802.11ac. The paper examines the first step in this direction and as such we first consider a single TCP connection, which is typical in a home environment. We show that when the IEEE 802.11ac MAC is aware of QoS TCP traffic, using Reverse Direction improves the TCP Goodput in tens of percentages compared to the traditional contention based channel access. In an error-free channel this improvement is 20% while in an error-prone channel the improvement reaches 60% also using blind retransmission of frames. In our operation modes we also assume the use in Two-Level aggregation scheme, the Automatic Repeat-Request (ARQ) protocol of the IEEE 802.11ac MAC layer, the data rates and the four Access Categories defined in this standard.

References

[1]  IEEE P802.11-REVmc TM/D4.3. IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE, New York.
[2]  IEEE Std. 802.11ac TM-2013. IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Require-ments. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specific requirements. Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz. IEEE, New York.
[3]  IEEE Std. 802.11 TM-2012. Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE, New York.
[4]  Pilosof, S., Ramjee, R., Raz, D., Shavitt, Y. and Sinha, P. (2003) Understanding TCP Fairness over Wireless LAN. Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, San Francisco, 30 March-3 April 2003, 863-872.
http://dx.doi.org/10.1109/infcom.2003.1208924
[5]  Miorandi, D., Kherani, A.A. and Altman, E. (2006) A Queueing Model for
HTTP Traffic over IEEE802.11 WLANs. Computer Networks, 50, 63-79.
http://dx.doi.org/10.1016/j.comnet.2005.04.004
[6]  Yu, J. and Choi, S. (2007) Modeling and Analysis of TCP Dynamics over IEEE 802.11 WLAN. 4th Annual Conference on Wireless on Demand Network Systems and Services, Oberguyrgl, 24-26 January 2007, 154-161.
http://dx.doi.org/10.1109/wons.2007.340482
[7]  Keceli, E., Inan, I. and Ayanoglu, E. (2008) Fair and Efficient TCP Access in IEEE 802.11 WLANs. IEEE Wireless Communications and Networking Conference, Las Vegas, 31 March-3 April 2008, 1745-1750.
http://dx.doi.org/10.1109/wcnc.2008.311
[8]  Bruno, R., Conti, M. and Gregori, E. (2005) Throughput Analysis of UDP and TCP Flows in IEEE 802.11b WLANs: A Simple Model and Its Validation. Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems, 19 September 2005, 54-63.
http://dx.doi.org/10.1109/FIRB-PERF.2005.20
[9]  Bruno, R., Conti, M. and Gregori, E. (2008) Throughput Analysis and Measurements in IEEE 802.11 WLANs with TCP and UDP Traffic Flows. IEEE Transactions on Mobile Computing, 7, 171-186.
http://dx.doi.org/10.1109/TMC.2007.70718
[10]  Bruno, R., Conti, M. and Gregori, E. (2005) Modeling TCP Throughput over Wireless LANs. Proceedings of 17th IMACS World Congress Scientific Computation, Applied Mathematics and Simulation, Paris, 11-15 July 2005, 626-637.
[11]  Statkus, A. and Paulikas, S. (2013) Improving TCP Performance in IEEE 802.11 Networks. Elektronica IR Elektrotechnika, 19, 99-102.
http://dx.doi.org/10.5755/j01.eee.19.5.2571
[12]  Ng, A.C.H., Malone, D. and Leith, D.J. (2005) Experimental Evaluation of TCP Performance and Fairness in an 802.11e Test-Bed. Proceedings of ACM SIGCOMM Workshop on Experimental Approaches to Wireless Networks Design and Analysis, Philadelphia, 22-26 August 2005, 17-22.
http://dx.doi.org/10.1145/1080148.1080152
[13]  Leith, D.J., Clifford, P., Malone, D. and Ng, A.C.H. (2005) TCP Fairness in 802.11e WLANs. IEEE Communications Letters, 9, 964-966.
http://dx.doi.org/10.1109/LCOMM.2005.11004
[14]  Kim, M., Park, E.C. and Kim, W. (2013) TCP Acknowledgement Compression for Fairness among Uplink TCP Flows in IEEE 802.11n WLANs. Journal of Institute of Control, Robotics and Systems, 19, 653-660.
http://dx.doi.org/10.5302/J.ICROS.2013.13.1926
[15]  Sharon, O. and Alpert, Y. (2016) Coupled IEEE 802.11ac and TCP Performance Evaluation in Various Aggregation Schemes and Access Categories. Computer Networks, 100, 141-156.
http://dx.doi.org/10.1016/j.comnet.2016.02.023
[16]  Yu, J., Choi, S. and Qiao, D. (2002) Analytical Study of TCP Performance over IEEE 802.11e WLANs. Mobile Networks and Applications, 14, 470-485.
http://dx.doi.org/10.1007/s11036-008-0111-z
[17]  Kumar, A., Altman, E., Miorandi, D. and Goyal, M. (2007) New Insights from a Fixed Point Analysis of Single Cell IEEE 802.11 WLANs. IEEE/ACM Transactions on Networking, 15, 588-601.
http://dx.doi.org/10.1109/TNET.2007.893091
[18]  Lynn, S. (2014) The Best NAS for Most Home Users.
http://thewirecutter.com/reviews/best-network-attached-storage/
[19]  Ha, S., Rhee, I. and Xu, L. (2008) CUBIC: A New TCP-Friendly High-Speed TCP Variant. ACM SIGOPS Operating Systems Review, 42, 64-74.
http://dx.doi.org/10.1145/1400097.1400105
[20]  Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M.Y. and Wang, R. (2001) TCP Westwood: Band-Width Estimation for Enhanced Transport over Wireless Links. Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, Rome, 16-21 July 2001, 287-297.
http://dx.doi.org/10.1145/381677.381704
[21]  Henderson, T., Floyd, S., Gurtov, A. and Nishida, Y. (2002) The NewReno Modification to TCP’s Recovery Algorithm. Request for Comments (RFC) 6582.
https://www.rfc-editor.org/rfc/rfc6582.txt
[22]  Sharon, O, and Alpert, Y. (2016) A New Aggregation Based Scheduling Method for Rapidly Changing IEEE 802.11ac Wireless Channels.
[23]  Sidelnikov, A. and Choi, J.S. (2006) Fragmentation/Aggregation Scheme for Throughput Enhancement of IEEE 802.11n WLAN. Proceedings of IEEE Asia Pacific Wireless Communications Symposium, Dacjon, 24-25 August 2006.
[24]  Lin, Y. and Wong, V.W.S. (2006) Frame Aggregation and Optimal Frame Size Adaptation for IEEE 802.11n WLANs. IEEE Global Telecommunications Conference, San Francisco, 27 November-1 December 2006, 1-6.
http://dx.doi.org/10.1109/glocom.2006.925
[25]  Ginzbyrg, B. and Kesselman, A. (2007) Performance Analysis of A-MPDU and A-MSDU Aggregation in IEEE 802.11n. IEEE Sarnoff Symposium, Nassau Inn, Princeton, 30 April-2 May 2007, 1-5.
http://dx.doi.org/10.1109/sarnof.2007.4567389
[26]  Skotdoulis, D., Ni, Q., Chen, H.H., Stephens, A.P., Kiu, C. and Jamalipour, A. (2008) IEEE 802.11n MAC Frame Aggregation Mechanisms for Next-Generation High-Throughput WLANS. IEEE Wireless Communications, 15, 40-47.
http://dx.doi.org/10.1109/MWC.2008.4454703
[27]  Kim, B.S., Huong, H.Y. and Sung, D.K. (2008) Effect of Frame Aggregation on the Throughput Performance of IEEE 802.11n. Wireless Communications and Networking Conference, Las Vegas, 31 March-3 April 2008, 1740-1744.
http://dx.doi.org/10.1109/wcnc.2008.310
[28]  Chan, K. (2009) Evaluation and Enhancements in 802.11n WLANs: Error Sensitive Adaptive Frame Aggregation. Master Thesis, San Jose State University, San Jose.
http://scholarworks.sjsu.edu/etd_projects/79/
[29]  Wang, C.Y. and Wei, H.Y. (2009) IEEE 802.11n MAC Enhancement and Performance Evaluation. Mobile Networks and Applications, 14, 760-771.
http://dx.doi.org/10.1007/s11036-008-0129-2
[30]  Selvan, T. and Srikanth, S. (2010) A Frame Aggregation Scheduler for IEEE 802.11n. National Conference on Communication, Chennai, 29-31 January 2010, 1-5.
[31]  Zielinski, B. (2011) Efficiency Analysis of IEEE 802.11 Protocol with Block Acknowledge and Frame Aggregation. Bulletin of the Polish Academy of Sciences Technical Sciences, 59, 235-243.
http://dx.doi.org/10.2478/v10175-011-0029-7
[32]  Daldoul, Y., Ahmed, T. and Meddour, D.E. (2011) IEEE 802.11n Aggregation Performance Study for the Multicast. IFIP Wireless Days, Niagara Falls, 10-12 October 2011, 1-6.
http://dx.doi.org/10.1109/wd.2011.6098211
[33]  Saif, A., Othman, M., Subramaniam, S. and Hamid, N.A. (2012) An Enhanced A-MSDU Frame Aggregation Scheme for 802.11n Wireless networks. Wireless Personal Communications, 6, 683-706.
http://dx.doi.org/10.1007/s11277-011-0358-8
[34]  Kolap, J., Krishnan, S. and Shaha, N. (2012) Frame Aggregation Mechnism for High-Throughput 802.11n WLANs. International Journal of Wireless & Mobile Networks, 4, 141-153.
http://dx.doi.org/10.5121/ijwmn.2012.4309
[35]  Kim, Y., Monroy, E., Lee, O., Park, K.J. and Choi, S. (2012) Adaptive Two-Level Frame Aggregation in IEEE 802.11n WLAN. 18th Asia-Pacific Conference on Communication, Jeju Island, 15-17 October 2012, 658-663.
http://dx.doi.org/10.1109/apcc.2012.6388276
[36]  Park, N. (2011) IEEE 802.11ac: Dynamic Bandwidth Channel Access. IEEE International Conference on Communications, Kyoto, 5-9 June 2011, 1-5.
http://dx.doi.org/10.1109/icc.2011.5963089
[37]  Ong, E.H., Kneck, J., Alanen, O., Chang, Z., Huovinen, T. and Nihtila, T. (2011) IEEE 802.11ac: Enhancements for Very High Throughput WLANs. IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, 11-14 September 2011, 849-853.
[38]  Chang, Z., Alanen, O., Huovinen, T., Nihtila, T., Ong, E.H., Kneckt, J. and Ristaniemi, T. (2012) Performance Analysis of IEEE 802.11ac DCF with Hidden Nodes. IEEE 75th Vehicular Technology Conference, Yokohama, 6-9 May 2012, 1-5.
http://dx.doi.org/10.1109/vetecs.2012.6240054
[39]  Bellalta, B., Barcelo, J., Staehle, D., Vinel, A. and Oliver, M. (2012) On the Performance of Packet Aggregation in IEEE 802.11ac MU-MIMO WLANs. IEEE Communication Letters, 16, 1588-1591.
http://dx.doi.org/10.1109/LCOMM.2012.081612.120744
[40]  Sharon, O. and Alpert, Y. (2014) MAC Level Throughput Comparison: 802.11ac vs. 802.11n. Physical Communication, 12, 33-49.
http://dx.doi.org/10.1016/j.phycom.2014.01.007
[41]  Changwen, L. and Stephens, A.P. (2006) Delayed Channel Access for IEEE 802.11e Based WLAN. IEEE International Conference on Communication, Istanbul, June 2006, 4811-4817.
[42]  Skordoulis, D., Ni, Q., Min, G. and Borg, K. (2008) Adaptive Delayed Channel Access for IEEE 802.11n WLANs. IEEE International Conference on Circuits and Systems for Communications, Shanghai, 26-28 May 2008, 167-171.
http://dx.doi.org/10.1109/iccsc.2008.42
[43]  Li, T., Ni, Q., Malone, D., Leith, D., Xiao, Y. and Turletti, T. (2009) Aggregation with Fragment Retransmission for Very High-Speed WLANs. IEEE/ACM Transactions on Networking, 17, 591-604.
http://dx.doi.org/10.1109/TNET.2009.2014654
[44]  Skordoulis, D., Ni, Q. and Zarakovitis, C. (2009) A Selective Delayed Channel Access (SDCA) for the High-Throughput IEEE 802.11n. IEEE Wireless Communication and Networking Conference, Budapest, 5-8 April 2009, 1-8.
http://dx.doi.org/10.1109/wcnc.2009.4917544
[45]  Camps-Mur, D., Gomony, M.D., Perez-Costa, X. and Sllent-Ribes, S. (2012) Leveraging 802.11n Frame Aggregation to Enhance QoS and Power Consumption in Wi-Fi Networks. Computer Networks, 56, 2896-2911.
http://dx.doi.org/10.1016/j.comnet.2012.05.004
[46]  Sharon, O. and Alpert, Y. (2015) The Combination of Aggregation, ARQ, QoS Guarantee and Mapping of Application Flows in Very High Throughput 802.11ac Networks. Physical Communication, 17, 15-36.
http://dx.doi.org/10.1016/j.phycom.2015.06.002
[47]  Garcia, M.A., Santos, M.A. and Villalon, J. (2011) IEEE 802.11n MAC Mechanisms for High Throughput: A Performance Evaluation. The 7th International Conference on Networking and Services, Venice, 22-27 May 2011, 32-37.
[48]  Milad, A.A., Noh, Z.A.B.M., Shibghatullah, A.S. and Algaet, M.A. (2013) Reverse Direction Transmission in Wireless Networks: Review. Middle-East Journal of Scientific Research, 18, 767-778.
[49]  Milad, A.A., Noh, Z.A.B.M., Shibghatullah, A.S., Algaet, M.A. and Mustaphs, A. (2014) Reverse Direction Transmission using Single Data Frame and Multi Data Frames to Improve the Performance of MAC Layer Based on IEEE 802.11N. International Symposium on Research in Innovation and Sustainability, Melaka, 15-16 October 2014, 1861-1864.
[50]  Palacios, R., Franch, F., Gallego, F.V., Zarate, J.A. and, Granelli, F. (2015) Experimental Evaluation of Reverse Direction Transmissions in WLAN Using the WARP Platform. IEEE Int. Conf. on Communication, London, 8-12 June 2015, 6139-6145.
[51]  Lemmon, J. (2002) Wireless Link Statistical Bit Error Rate Model. Technical Report 02-934, U.S. Dept. of Commerce, Boulder.
[52]  Zorzi, M., Rao, R. and Milstein, L.B. (1995) On the Accuracy of a First Order Markov Model for Data Transmission on Fadding Channels. 4th IEEE International Conference on Universal Personal Communications, Tokyo, 6-10 November 1995, 211-215.
http://dx.doi.org/10.4108/icst.simutools.2013.251700
[53]  Gomez, D., Aguero, R., Garcia-Arranz, M. and Munoz, L. (2013) Replication of the Bursty Behavior of Indoor WLAN Channels. Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques, Cannes, 6-8 March 2013, 219-226.
[54]  (2011) Wi-Fi CERTIFIED n Interoperability Test Plan Version v2.0.38. WiFi Alliance.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133