Can Thermal Input from a Prior Universe Account for Relic Graviton Production and Imply Usage of the Bogomolnyi Inequality, as a Bridge between Brane World Models and Loop Quantum Gravity in Early Universe Conditions?
The author uses a low temperature and low entropy pre inflation state to create a bridge between String theory and loop quantum gravity. We use this analysis in lieu of the CMB barrier as of z = 1000 since it is our way to come up with a working model of quintessence scalar fields, which permits relic generation of dark matter and dark energy. Not only referencing this bridge, we do it in such a way as to utilize the low entropy condition which the Brane world model of Randal and Sundrum creates, and to show how it is in common with what Caroll and Chen wrote up in 2005., i.e. when the universe was about 1000 times smaller and 100,000 times younger than today.
References
[1]
Weinberg, S. (1972) Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley & Sons, Inc., New York.
[2]
Penrose, R. (1989) The Emperor’s New Mind, Ch. 7. Oxford University Press, Oxford. (And references therein)
[3]
Crowell, L. (2005) Quantum Fluctuations of Space-Time. In: World Scientific Series in Contemporary Chemical Physics, Vol. 25, Singapore.
[4]
Park, D.K., Kim, H. and Tamarayan, S. (2002) Nonvanishing Cosmological Constant of Flat Universe in Brane-Wor Scenario. Physics Letters B, 535, 5-10. http://arxiv.org/abs/hep-th/0111081
http://dx.doi.org/10.1016/S0370-2693(02)01729-X
[5]
Carroll, S.M. and Chen, J. (2005) Does Inflation Provide Natural Initial Conditions for the Universe. General Relativity and Gravitation, 37, 1671-1674. http://arxiv.org/abs/gr-qc/0505037v1 http://dx.doi.org/10.1007/s10714-005-0148-2
[6]
Padmanabhan, T. (2005) Understanding Our Universe: Current Status and Open Issues. In: Ashtekar, A., Ed., 100 Years of Relativity Space-Time Structure: Einstein and Beyond, World Press Scientific, Singapore, 175-204.
http://dx.doi.org/10.1142/9789812700988_0007
[7]
Wald, R.M. (2005) The Arrow of Time and the Initial Conditions of the Universe. Studies in History and Philosophy of Science Part B, 37, 394-398. https://arxiv.org/abs/gr-qc/0507094 http://dx.doi.org/10.1016/j.shpsb.2006.03.005
Tsiklauri, D. (1998) Jeans Instability of Interstellar Gas Clouds in the Background of Weakly Interacting Massive Particles. The Astrophysical Journal, 507, 226-228. http://arxiv.org/abs/astro-ph/9805271
http://dx.doi.org/10.1086/306334
[10]
Kunze, K.E. and Sakellariadou, M. (2002) Graviton Production from Extra Dimensions. Physical Review D, 66, Article ID: 104005. http://dx.doi.org/10.1103/PhysRevD.66.104005
[11]
Ashtekar, A., Pawlowski, T. and Singh, P. (2006) Quantum Nature of the Big Bang. Physical Review Letters, 96, Article ID: 141301. http://dx.doi.org/10.1103/PhysRevLett.96.141301
[12]
Ashtekar, A., Pawlowski, T. and Singh, P. (2006) Quantum Nature of the Big Bang: An Analytical and Numerical Investigation. Physical Review D, 73, Article ID: 124038. http://arxiv.org/abs/gr-qc/0604013
[13]
Buusso, R. and Randall, L. (2001) Holographic Domains of Anti-de Sitter Space. Journal of High Energy Physics, 2002. https://arxiv.org/abs/hep-th/0112080
[14]
Feng, B., Li, M., Xia, J. Chen, Z. and Zhang, X. (2006) Searching for CPT Violation with Cosmic Microwave Background Data from WMAP and Boomerang. Physical Review Letters, 96, Article ID: 221302.
http://arxiv.org/abs/astro-ph/0601095 http://dx.doi.org/10.1103/PhysRevLett.96.221302
[15]
Ichiki, K., Takahashi, K., Ohno, H., Hanayama, H. and Sugiyama, N. (2006) Cosmological Magnetic Field: A Fossil of Density Perturbations in the Early Universe. Science, 311, 827-829. http://dx.doi.org/10.1126/science.1120690
[16]
Li, M., Wang, X., Feng, B. and Zhang, X. (2001) Quintessence and Spontaneous Leptogenesis. Physical Review D, 65, Article ID: 103511. https://arxiv.org/abs/hep-ph/0112069 http://dx.doi.org/10.1103/PhysRevD.65.103511
[17]
Wesson, P.S. (1999) Space-Time-Matter, Modern Kaluza-Klein Theory. World Scientific, Singapore.
[18]
Kummel, H.G. (2006) Quantum Theory “without Measurement”. International Journal of Modern Physics B, 20, 4982-4991. http://dx.doi.org/10.1142/S0217979206036028
[19]
Susskind, L. (1994) The World as a Hologram. Journal of Mathematical Physics, 36, 6377-6396.
https://arxiv.org/abs/hep-th/9409089 http://dx.doi.org/10.1063/1.531249
[20]
Kolb, E.W. and Turner, M.S. (1990) The Early Universe. West View Press, Boulder.
[21]
Balin, D. and Love, A. (2004) Cosmology in Gauge Field Theory and String Theory. Institute of Physics Publishing, Ltd., London.
[22]
Easther, R. and Lowe, D.A. (1999) Holography, Cosmology and the Second Law of Thermodynamics. Physical Review Letters, 82, 4967-4970. http://arxiv.org/abs/hep-th/9902088 http://dx.doi.org/10.1103/PhysRevLett.82.4967
[23]
Loup, F. (2006) On the 5D Extra-Force according to Basini-Capozziello-Ponce De Leon Formalism and Five Important Features: Kar-Sinha Gravitational Bending of Light, Chung-Freese Superluminal Behaviour, Maartens-Clarkson Black Strings, Experimental Measures of Extra Dimensions on Board International Space Station (ISS) and the Existence of the Particle Z Due to a Higher Dimensional Spacetime. General Relativity and Gravitation, 38, 1423-1506.
http://dx.doi.org/10.1007/s10714-006-0319-9
[24]
Maartens, R. (2005) Brane World Cosmology. In: Papantonopoulos, E. (Ed.), The Physics of the Early Universe, Lecture Notes in Physics, Vol. 653, Springer Verlag, Berlin, 213-249.
[25]
Giovannini, M. (1999) Production and Detection of Relic Gravitons in Quintessential Inflationary Models. Physical Review D, 60, Article ID: 123511. http://dx.doi.org/10.1103/PhysRevD.60.123511
[26]
Fontana, G. (2005) Gravitational Wave Propulsion. In: El-Genk, M.S., Ed., CP746, Space Technology and Applications International Forum-STAIF, American Institute of Physics, Melville.
[27]
Sundrum, R. (2005) Extra Dimensions. SLAC Summer Institute: Gravity in the Quantum World and the Cosmos.
http://wwwconf.slac.stanford.edu/ssi/2005/lec_notes/Sundrum1/sundrum1.pdf
[28]
Beckwith, A.W. (2007) How a Randall-Sundrum Brane-World Effective Potential Influences Inflation Physics. AIP Conference Proceedings, 880, 1170-1180. https://arxiv.org/ftp/physics/papers/0610/0610247.pdf
http://dx.doi.org/10.1063/1.2437564
[29]
Leach, J.A. and Lesame, W.M. (2005) Conditional Escape of Gravitons from the Brane.
http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:gr-qc/0502109
[30]
Henriques, A.B. (2006) Loop Quantum Cosmology and the Wheeler-De Witt Equation. General Relativity and Gravitation, 38, 1645-1659. http://arxiv.org/abs/gr-qc/0601134 http://dx.doi.org/10.1007/s10714-006-0330-1
[31]
Banerjee, B. and Gavai, R. (1993) Super Cooling and Nucleation in Phase Transitions.
http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:gr-qc/0603021
[32]
Griskuck, L.P. and Solokhin, M. (1991) Spectra of Relic Gravitons and the Early History of the Hubble Parameter. Physical Review D, 43, 2566-2571. http://dx.doi.org/10.1103/PhysRevD.43.2566
[33]
Rothman, T. and Boughn, S. (2006) Can Gravitons Be Detected?
http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:gr-qc/0601043
[34]
Shapiro, S.L. and Teukolosky, S. (1983) Black Holes, White Dwarfs, and Neutron Stars. John Wiley and Sons, New York. http://dx.doi.org/10.1002/9783527617661
[35]
Dyson, F. (2013) Is a Graviton Detectable? International Journal of Modern Physics A, 28, Article ID: 1330041.
http://dx.doi.org/10.1142/S0217751X1330041X
[36]
Gurzadyan, G. and Xue, S.-S. (2003) On the Estimation of the Current Value of the Cosmological Constant. Modern Physics Letters A, 18, 561-568. http://dx.doi.org/10.1142/S0217732303008405
[37]
Zhitinisky, A.R. (2002) Dark Matter as Dense Color Superconductor. Nuclear Physics B-Proceedings Supplements, 124, 99-102. http://arxiv.org/abs/astro-ph/0204218 http://dx.doi.org/10.1016/S0920-5632(03)02087-5
[38]
Corda, C. (2008) Massive Gravitational Waves from the R**2 Theory of Gravity: Production and Response of Interferometers. International Journal of Modern Physics A, 23, 1521-1535.
http://dx.doi.org/10.1142/S0217751X08038603
[39]
Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. http://arxiv.org/abs/0905.2502
http://dx.doi.org/10.1142/S0218271809015904
[40]
Abbott, B.P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102. https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/physrevlett.116.061102
[41]
Maggiore, M. (2008) Gravitational Waves, Volume 1, Theory and Experiment. Oxford University Press, Oxford.
[42]
Jack Ng, Y. (2008) Space-Time Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461. http://dx.doi.org/10.3390/e10040441
[43]
Beckwith, A. (2016) Open Question: Could a Causal Discontinuity Explain Fluctuations in the CMBR Radiation Spectrum? Journal of High Energy Physics, Gravitation and Cosmology, 2, 186-208.
http://dx.doi.org/10.4236/jhepgc.2016.22018
[44]
Gao, C.J. (2012) A Model of Nonsingular Universe. Entropy, 14, 1296-1305. http://dx.doi.org/10.3390/e14071296
[45]
Camara, C.S., de Garcia Maia, M.R., Carvalho, J.C. and Lima, J.A.S. (2004) Nonsingular FRW Cosmology and Nonlinear Dynamics. Physical Review D: Particles and Fields, 69, Article ID: 063501.