全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Selecting the Quantity of Models in Mixture Regression

DOI: 10.4236/apm.2016.68044, PP. 555-563

Keywords: Mixture Regression, Model Based Clustering, Information Criterion, AIC, BIC

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mixture regression is a regression problem with mixed data. Specifically, in the observations, some data are from one model, while others from other models. Only after assuming the quantity of the model is given, EM or other algorithms can be used to solve this problem. We propose an information criterion for mixture regression model in this paper. Compared to ordinary information citizen by data simulations, results show our citizen has better performance on choosing the correct quantity of models.

References

[1]  McLachlan, G. and Peel, D. (2004) Finite Mixture Models. John Wiley & Sons, Hoboken.
[2]  Fraley, C. and Raftery, A.E. (2002) Model-Based Clustering, Discriminant Analysis, and Density Estimation. American Statistical Association, 97, 611-631.
http://dx.doi.org/10.1198/016214502760047131
[3]  Ingrassia, S., Minotti, S.C. and Punzoa, A. (2014) Model-Based Clustering via Linear Cluster-Weighted Models. Computational Statistics and Data Analysis, 71, 159-182.
http://dx.doi.org/10.1016/j.csda.2013.02.012
[4]  Fraley, C. and Raftery, A.E. (1998) How Many Clusters? Which Clustering Method? Answers via Model-Based Cluster Analysis. The Computer Journal, 41, 578-588.
http://dx.doi.org/10.1093/comjnl/41.8.578
[5]  Fraley, C. and Raftery, A.E. (2002) Model-Based Clustering, Discriminant Analysis, and Density Estimation. American Statistical Association, 97, 611-631.
http://dx.doi.org/10.1198/016214502760047131
[6]  Song, W.X., Yao, W.X. and Xing, Y.R. (2014) Robust Mixture Regression Model Fitting by Laplace Distribution. Computational Statistics and Data Analysis, 71, 128-137.
http://dx.doi.org/10.1016/j.csda.2013.06.022
[7]  Wu, Q. and Yao, W. (2016) Mixtures of Quantile Regressions. Computational Statistics & Data Analysis, 93, 162-176.
http://dx.doi.org/10.1016/j.csda.2014.04.014
[8]  Lang, D.W. and Ye, W.Z. (2015) A Fast Iteration Method for Mixture Regression Problem. Journal of Applied Mathematics and Physics, 3.
http://dx.doi.org/10.4236/jamp.2015.39136
[9]  Tibshirani, R., Walther, G. and Hastie, T. (2002) Estimating the Number of Clusters in a Data Set via the Gap Statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63, 411-423.
[10]  Aho, K., Derryberry, D. and Peterson, T. (2014) Model Selection for Ecologists: The Worldviews of AIC and BIC. Ecology, 95, 631-636.
http://dx.doi.org/10.1890/13-1452.1
[11]  Naik, P.A., Shi, P. and Tsai, C.-L. (2007) Extending the Akaike Information Criterionto Mixture Regression Models. Journal of the American Statistical Association, 102.
[12]  Mixreg, R.T. Functions to Fit Mixtures of Regressions. R Package Version 0.0-5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133