全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of a Multimodal and Multispectral Led Imager: Application to Organic Polymer’s Microspheres with Diameter Φ = 10.2 μm

DOI: 10.4236/opj.2016.67019, PP. 171-183

Keywords: Multispectral Imaging, Reference Wavelength, Correction Coefficients, Modulation Transfer Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multispectral microscopy enables information enhancement in the study of specimens because of the large spectral band used in this technique. A low cost multimode multispectral microscope using a camera and a set of quasi-monochromatic Light Emitting Diodes (LEDs) ranging from ultraviolet to near-infrared wavelengths as illumination sources was constructed. But the use of a large spectral band provided by non-monochromatic sources induces variation of focal plan of the imager due to chromatic aberration which rises up the diffraction effects and blurs the images causing shadow around them. It results in discrepancies between standard spectra and extracted spectra with microscope. So we need to calibrate that instrument to be a standard one. We proceed with two types of images comparison to choose the reference wavelength for image acquisition where diffraction effect is more reduced. At each wavelength chosen as a reference, one image is well contrasted. First, we compare the thirteen well contrasted images to identify that presenting more reduced shadow. In second time, we determine the mean of the shadow size over the images from each set. The correction of the discrepancies required measurements on filters using a standard spectrometer and the microscope in transmission mode and reflection mode. To evaluate the capacity of our device to transmit information in frequency domain, its modulation transfer function is evaluated. Multivariate analysis is used to test its capacity to recognize properties of well-known sample. The wavelength 700 nm was chosen to be the reference for the image acquisition, because at this wavelength the images are well contrasted. The measurement made on the filters suggested correction coefficients in transmission mode and reflection mode. The experimental instrument recognized the microsphere’s properties and led to the extraction of the standard transmittance and reflectance spectra. Therefore, this microscope is used as a conventional instrument.

References

[1]  Zoueu, J.T., Loum, G.L., Cisse Haba, T., Brydegaard, M. and Menan, H. (2008) Optical Microscope Base on Multispectral Imaging Applied to Plasmodium Diagnosis. Journal of Applied Sciences, 8, 2711-2717.
http://dx.doi.org/10.3923/jas.2008.2711.2717
[2]  Brydegaard, M., Guan, Z. and Samberg, S. (2009) Broad-Band Multi-Spectral Microscope for imaging Transmission Spectroscopy Employing an Array of Light-Emitting Diodes (LEDs). American Journal of Physics, 77, 104-110.
http://dx.doi.org/10.1119/1.3027270
[3]  Sangare, M., Tekete, C., Bagui, O.K., Ba, A. and Zoueu, J.T. (2015) Identification of Bacterial Diseases in Rice Plants Leaves by the Use of Spectroscopic Imaging. Applied Physics Research, 7, 61-69.
http://dx.doi.org/10.5539/apr.v7n6p61
[4]  Sangare, M., Agneroh, T.A., Bagui, O.K., Traore, I., Ba, A. and Zoueu, J.T. (2015) Classification of African Mosaic Virus Infected Cassava Leaves by the Use of Multi-Spectral Imaging. Optics and Photonics Journal, 5, 261-272.
http://dx.doi.org/10.4236/opj.2015.58025
[5]  Levenson, R. and Mansfield, J. (2006) Multispectral Imaging in Biology and Medicine: Slices of Life. Cytometry Part A, 69A, 748-758.
http://dx.doi.org/10.1002/cyto.a.20319
[6]  Merdasa, A., Brydegaard, M., Svanberg, S. and Zoueu, J.T. (2013) Staining-Free Malaria Diagnostics by Multispectral and Multimodality Light-Emitting-Diode Microscopy. Journal of Biomedical Optics, 18, Article ID: 036002.
[7]  Zoueu, T. and Tokou, S. (2012) Trophozoite Stage Infected Erythrocyte Contents Analysis by Use of Spectral Imaging LED Microscope. Journal of Microscopy, 245, 90-99.
http://dx.doi.org/10.1111/j.1365-2818.2011.03548.x
[8]  Strojnik, M., Wang, Y., Randolph, J.E. and Ayon, J.A. (1991) Site-Certification Imaging Sensor for the Exploration of Mars. Optical Engineering, 30, 590-597.
http://dx.doi.org/10.1117/12.55842
[9]  Strojnik, M., Wang, Y. and Paez, G. (1995) Design of a High-Resolution Telescope for an Imaging Sensor to Characterize a (Martian) Landing Site. Optical Engineering, 34, 3222-3228
[10]  Rueda, L. (2014) Microarray Image and Data Analysis Theory and Practice. Electrical Engineering/Computer Science, 301-303.
[11]  Ohta, N. (1981) Maximum Errors in Estimating Spectral-Reflectance Curves from Multispectral Image Data. Journal of the Optical Society of America, 71, 910-913.
http://dx.doi.org/10.1364/JOSA.71.000910
[12]  Stephen, K. and Friedrich, O. (1977) Estimation of Spectral Reflectance Curves from Multispectral Image Data. Applied Optics, 12, 3107-3114.
[13]  Estribeau, M. ( 2004) Analyse et modélisation de la fonction de transfert de modulation des capteurs d’images à pixels actifs CMOS, Thèse de Doctorat, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace.
[14]  Egbert, B., Susanne, G. and Ulrich, N. (2003) Simple Method for Modulation Transfer Function Determination of Digital Imaging Detectors from Edge Images. Proceedings of SPIE, 5030, 877-884.
http://dx.doi.org/10.1117/12.479990
[15]  Urska, D., Paul, H., Chris, B., Stewart, A. and Sean, M. (2011) Principal Component Analysis on Spatial Data: An Overview. Annals of the Association of American Geographers, 103, 1-23.
[16]  Barry, M. and Paul, G. A Brief Introduction to Multivariate Image Analysis (MIA).
http://www.eigenvector.com/Docs/MIA_Intro.pdf
[17]  Besse, P.C. (1992) PCA Stability and Choice of Dimensionality. Statistics & Probability Letters, 13, 405-410.
http://dx.doi.org/10.1016/0167-7152(92)90115-L
[18]  Analyse en composantes Principales.
http://fr.wikipedia.org/wiki/Analyse_en_composantes_principales
[19]  Shlens, J. (2014) A Tutorial on Principal Component Analysis.
[20]  Eric, W. (2014) K-Means Clustering Algorithm from Wolfram Mathworld.
[21]  DUNOD. Statistique exploratoire multidimensionnelle. 3e Edition, 155-158.
[22]  Bloch, I. ( 2003) Classification et reconnaissance des formes. 17.
[23]  Chicea, D. and Turcu, I. (2005) A Random Walk Montecarl Approach to Simulate Multiple Light Scattering on Biological Suspensions. Romanian Report in Physics, 3, 418-425.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133