全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Relic Entropy Growth and Initial Big Bang Conditions, as a Subset of Quantum Information

DOI: 10.4236/jhepgc.2016.23035, PP. 392-411

Keywords: Entropy, Cosmic Singularity, Zero Point Energy (ZPE), Emergent Fields, Gravitons, Vacuum States, Quantum Information States, Anti de Sitter Correspondence with Conformal Field Theory, (Ads/CFT)

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper shows how increased entropy values from an initially low big bang level can be measured experimentally by counting relic gravitons. Furthermore the physical mechanism of this entropy increase is explained via analogies with early-universe phase transitions. The role of Ng’s revised infinite quantum statistics in the physics of gravitational wave detection is acknowledged. Ng’s infinite quantum statistics can be used to show that \"\" is a starting point to the increasing net universe cosmological entropy. Finally, in a nod to similarities with zero point energy (ZPE) analysis, it is important to note that the resulting \"\" in fact is much lower, allowing for evaluating initial graviton production as an emergent field phenomena, which may be similar to how ZPE states can be used to extract energy from a vacuum if entropy is not maximized. The rapid increase in entropy so alluded to without near sudden increases to 1088 may be enough to allow successful modeling of relic graviton production for entropy in a manner similar to zero point energy (ZPE) energy extraction from a vacuum state. This entropy count is akin to quantum information models used to tell how much “information” may be stored in initial conditions, and transferred from a prior to the present

References

[1]  Ramallo, A. (2013) Introduction to the AdS/CFT Correspondence. http://arxiv.org/abs/1310.4319
[2]  Ng, Y.J. (2008) Space-Time Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461.
[3]  Lloyd, S. (2002) Computational Capacity of the Universe. Physical Review Letters, 88, 237901
http://dx.doi.org/10.1103/PhysRevLett.88.237901
[4]  Dowker, H.F. (2005) Causal Sets and the Deep Structure of Spacetime. In: Ashtekar, A., Ed., 100 Years of Relativity Space-Time Structure: Einstein and Beyond, World Press Scientific, Singapore, 445-464. arXIV gr-qc/0508109v1
[5]  Glinka, L. (2007) Quantum Information from Graviton-Matter Gas. Sigma, 3, 087, 13 p. https://www.emis.de/journals/SIGMA/2007/087/sigma07-087.pdf
[6]  Carroll, S. (2004) An Introduction to General Relativity Space Time and Geometry. Addison Wesley Publishing House, San Francisco.
[7]  Heavens, A., Jimenez, R. and Lahav, O. (2000) Massive Lossless Data Compression and Multiple Parameter Estimation from Galaxy Spectra. Monthly Notices of the Royal Astronomical Society, 317, 965. http://arxiv.com/abs/astro-ph/9911102 http://dx.doi.org/10.1046/j.1365-8711.2000.03692.x
[8]  Avetissian, A.K. (2009) Plancks Constant Evolution as a Cosmological Evolution Test for the Early Universe. Gravitation and Cosmology, 15, 10-12. http://dx.doi.org/10.1134/S0202289309010034
[9]  Beckwith, A.W. (2008) Implications for the Cosmological Landscape: Can Thermal Inputs from a Prior Universe Account for Relic Graviton Production? AIP Conference Proceedings, 969, 1091-1102.
http://dx.doi.org/10.1063/1.2844947
https://arxiv.org/abs/0803.0101
[10]  Crowell, L. (2005) Quantum Fluctuations of Space Time. World Scientific Series in Contemporary Chemical Physics, 25, World Scientific, PTE, LTD, Singapore.
[11]  Batle-Vallespir, J. (2006) Characterization of Quantum Entangled States and Information Measures. Ph.D. Dissertation. http://cdsweb.cern.ch/record/935088/files/0603124.pdf
[12]  Hogan, C. (2002) Holographic Discreteness of Inflationary Perturbations. Physical Review D, 66, Article ID: 023521. arXiv:astro-ph/0201020v2. http://dx.doi.org/10.1103/PhysRevD.66.023521
[13]  Weinberg, S. (1973) Gravitation. Freeman, San Francisco.
[14]  Gutt, S. and Waldmann, S. (2006) Deformation of the Poisson Bracket on a Sympletic Manifold. In: Franciose, Naber, and Tsun, Eds., The Encyclopedia of Mathematical Physics; Algebraic Topology; Sympletic Geometry and Topology; Ordinary and Partial Differential Equations, Volume 11, 119-129.
[15]  Honig, W.M. (1974) A Minimum Photon Rest Mass-Using Planck’s Constant and Discontinuous Electromagnetic Waves. Foundations of Physics, 4, 367-380. http://dx.doi.org/10.1007/BF00708542
[16]  Visser, M. (1998) Mass for the Graviton. General Relativity and Gravitation, 30, 1717-1728. http://arxiv.org/abs/gr-qc/9705051 http://dx.doi.org/10.1023/A:1026611026766
[17]  Beckwith, A., Li, F.Y., Yang, N., Dickau, J., Stephenson G., Glinka, L. (2011) Is Octonionic Quantum Gravity Relevant near the Planck Scale? If Gravity Waves Are Generated by Changes in the Geometry of the Early Universe, How Can We Measure Them? A Chapter in Cosmology Book, Nova Book Publishersn. http://vixra.org/abs/1101.0017
[18]  Feinstein, A. and Vazquez-Mozo, M.A. (2000) M-Theory Resolution of Four-Dimensional Cosmological Singularities via U-Duality. Nuclear Physics B, 568, 405-420.
http://arxiv.org/abs/hep-th/9906006/
http://dx.doi.org/10.1016/S0550-3213(99)00697-5
[19]  Nonakaa, C. and Bass S.A. (2006) 3-D Hydro + Cascade Model at RHIC. Nuclear Physics A, 774, 873-876. http://dx.doi.org/10.1016/j.nuclphysa.2006.06.155
[20]  Asakawa, M., Bass, S.A. and Müller, B. (2006) Anomalous Viscosity of an Expanding Quark-Gluon Plasma. Physical Review Letters, 96, 252301. http://dx.doi.org/10.1103/PhysRevLett.96.252301
[21]  Asakawa, M., Hatsuda, T. and. Nakahara, Y. (2001) Maximum Entropy Analysis of the Spectral Functions in Lattice QCD. Progress in Particle and Nuclear Physics, 46, 459-508.
http://dx.doi.org/10.1016/S0146-6410(01)00150-8
[22]  Torrieri, G. and Mishustin, I. (2008) Instability of Boost-Invariant Hydrodynamics with a QCD Inspired Bulk Viscosity. Physical Review C, 78, 021901.
http://arxiv.org/abs/0805.0442
http://dx.doi.org/10.1103/physrevc.78.021901
[23]  Son, D.T. AdS/CFT and Viscosity Bound. http://npl09.phy.duke.edu/talks/Son_NPFW.pdf
[24]  Dadhich, N. (2005) Derivation of the Raychaudhuri Equation. http://arxiv.org/abs/gr-qc/0511123
[25]  Natário, J. (2006). Relativity and Singularities—A Short Introduction for Mathematicians.
http://arxiv.org/abs/math.DG/0603190
[26]  Beckwith, A.W. (2009) Relic High Frequency Gravitational Waves from the Big Bang, and How to Detect Them. AIP Conference Proceedings, 1103, 571-581. (SPESIF)
http://arxiv.org/abs/0809.1454
http://dx.doi.org/10.1063/1.3115567
[27]  Mathur, S. and Chowdhury, B. (2007) Fractional Brane States in the Early Universe. Classical and Quantum Gravity, 24, 2689-2720. http://dx.doi.org/10.1088/0264-9381/24/10/014
[28]  Beckwith, A.W. (2007) Presented at 6th International Conference on Gravitation and Cosmology (ICGC 2007). Pune, 17-21 December 2007, in 20 Minute Presentation.
[29]  Beckwith, A.W. (2008) Penrose Model Potential, Compared with Coleman-Weinberg Potential for Early Universe Scalar Evolution. Electronic Journal of Theoretical Physics, 5N17, 95-106.
[30]  Lifschytz, G. (2004) Black Hole Thermalization Rate from Brane Antibrane Model. Journal of High Energy Physics, 08, 059. http://dx.doi.org/10.1088/1126-6708/2004/08/059
[31]  Beckwith, A.W. (2006) A New Soliton-Anti Soliton Pair Creation Rate Expression Improving upon Zener Curve Fitting for I-E Plots. Modern Physics Letters B, 20, 849-861.
http://arxiv.org/abs/math-ph/0411045
http://dx.doi.org/10.1142/S0217984906011219
[32]  Beckwith, A.W. (2001) Classical and Quantum Models of Density Wave Transport: A Comparative Study. PhD Dissertation, University of Houston Physics Department, Houston.
[33]  Becker, M., Leblond, M. and Shandera, S. (2007) Inflation from Wrapped Branes. Physical Review D, 76, 12351.
http://prd.aps.org/abstract/PRD/v76/i12/e123516
http://dx.doi.org/10.1103/physrevd.76.123516
[34]  Mithras, A. (2009) Personal Communications Exchanged with Author at ISEG 2009, in Kochi, India.
[35]  Mithra, A (2011) Why No Dark Energy, No Big Bang, But a Likely Fractal Universe? Presented at 32nd International Cosmic Ray Conference, Beijing 2011, Volume 5, 219-222.
http://galprop.stanford.edu/elibrary/icrc/2011/papers/HE3.5/icrc0794.pdf
[36]  Unnikrishnan, C.S. The One Way Speed of Light and Implications for Relativity Theories.
http://www.space-lab.ru/files/pages/PIRT_VII-XII/pages/text/PIRT_X/Unnikrishnan_1.pdf
[37]  Wald, R.M. (1994) Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (Chicago Lectures in Physics). University Of Chicago Press, Chicago, Illinois, USA.
[38]  Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Press Scientific, Singapore, Republic of Singapore. http://dx.doi.org/10.1142/6730
[39]  Penrose, R. (2010) Cycles of Time: An Extraordinary New View of the Universe. The Bodley Head, London, UK.
[40]  Penrose, R. (2006) Before the Big Bang: An Outrageous New Perspective and Its Implications for Particle Physics. Proceedings of EPAC, Edinburgh, Scotland, 2759-2763.
[41]  Steinhardt, P.J. and Turok, N. (2007) Endless Universe, Beyond the Big Bang. Doubleday Broadway Publishing Group, a Division of Random House Inc., New York.
http://map.gsfc.nasa.gov/media/060915/index.html
[42]  Grishchuk, L. (2008) Discovering Relic Gravitational Waves in Cosmic Microwave Background Radiation. http://arxiv.org/abs/0707.3319
[43]  Kolb, E. and Turner, S. (1994) The Early Universe. Westview Press, Chicago.
[44]  Thanu, P. (2008) From Gravitons to Gravity: Myths and Reality. International Journal of Modern Physics D, 17, 367- 398. http://dx.doi.org/10.1142/S0218271808012085
[45]  Galvaviz, I. (2007) Deformation Quantization for Fermionic Fields. Reviews Mexicana De Fisica S, 53, 51-55
[46]  Fontana, G. (2005) Gravitational Wave Propulsion. In: El-Genk, M.S., Ed., CP746, Space Technology and Applications International Forum-STAIF 2005, American Institute of Physics, Melville.
[47]  Park, D. (1955) Radiations from a Spinning Rod. Physical Review, 99, 1324-1325.
http://dx.doi.org/10.1103/PhysRev.99.1324
[48]  Koffman, L. (2008) Pre Heating after Inflation. In: Lemoine, M., Martin, J. and Peter, P., Eds., Lecture notes in Physics 738, Springer Verlag, Berlin, 55-79. http://dx.doi.org/10.1007/978-3-540-74353-8_2
[49]  Kawai, S. and Soda, J. (1999) Evolution of Fluctuations during Graceful Exit in String Cosmology. Physics Letters B, 460, 41-46. http://dx.doi.org/10.1016/S0370-2693(99)00736-4
[50]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. http://arxiv.org/abs/0905.2502 http://dx.doi.org/10.1142/S0218271809015904
[51]  Abbott, B.P., et al., LIGO Scientific Collaboration and Virgo Collaboration (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102. https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.116.061102
[52]  Clarkson, C., Clarkson, C. and Seahra, S.S. (2007) A Gravitational Wave Window on Extra Dimensions. Classical and Quantum Gravity, 24, F33. http://dx.doi.org/10.1088/0264-9381/24/9/f01
[53]  Capozziello, S., Feoli, A., Lambiase, G. and Papini, G. (2000) Thin Shell Quantization in Weyl Space-Time. Physics Letters A, 273, 25-30.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133