The effect of heat treatment for rice husk was investigated on the removal of arsenite in ground water by the adsorption onto the rice husk surface. The heat treatment was performed at the temperature from 80oC to 300oC in the closed system under anoxic environment. The continuous adsorption column method was applied for the removal of arsenite. The removal efficiency (75%) with rice husk treated at 150oC was better compared to those (54%) obtained with untreated rice husk. Therefore, the heat treatment of rice husk at relatively low temperature was effective for the enhancement of arsenic removal from water. The treatment conditions of As removal from aqueous solution were optimized. The developed treatment technique was applied into the real ground water sample in Bangladesh. The As concentration in sample water after treatment was approximately 18 and 8 μg/L, which was below the WHO guideline value of maximum admissible level of arsenic in ground water for Bangladesh (50 μg/L). The developed technique might become a potential avenue for simple and low cost arsenic removal methods.
References
[1]
Kumari, P., Sharma, S., Srivastava, S. and Srivastava, M.M. (2005) Arsenic Removal from the Aqueous System Using Plant Biomass: A Bioremedial Approach. Journal of Industrial Microbiology and Biotechnology, 32, 521-526. http://dx.doi.org/10.1007/s10295-005-0042-7
[2]
Korte, N.E. and Fernando, Q. (1991) A Review of Arsenic(III) in Groundwater. Critical Reviews in Environmental Control, 21, 1-39. http://dx.doi.org/10.1080/10643389109388408
[3]
Lee, H. and Choi, W. (2002) Photocatalytic Oxidation of Arsenite in TiO2 Suspension: Kinetics and Mechanisms. Environmental Science & Technology, 36, 3872-3878. http://dx.doi.org/10.1021/es0158197
[4]
Kim, Y., Kim, C., Choi, I., Rengaraj, S. and Yi, J. (2004) Arsenic Removal Using Mesoporous Alumina Prepared via a Templating Method. Environmental Science & Technology, 38, 924-931. http://dx.doi.org/10.1021/es0346431
[5]
Ranjan, D., Talat, M. and Hasan, S.H. (2009) Rice polish: An Alternative to Conventional Adsorbents for Treating Arsenic Bearing Water by Upflow Column Method. Industrial & Engineering Chemistry Research, 48, 10180-10185. http://dx.doi.org/10.1021/ie900877p
[6]
Srivastava, S., Raj, K.R. and Kardam, A. (2012) Efficient Arsenic Depollution in Water Using Modified Maize Powder. Environmental Chemistry Letters, 11, 47-53. http://dx.doi.org/10.1007/s10311-012-0376-0
[7]
Han, R.P., Li, Y.H., Li, H.Q., Wu, Y.J. and Shi, J. (2004) The Elemental Analysis and FT-IR Comparison between MDP and Casting. Spectroscopy & Spectral Analysis, 24, 185-186.
[8]
Chuah, T.G., Jumasiah, A., Azni, I., Katayon, S. and Choong, S.Y.T. (2005) Rice Husk as a Potentially Low-Cost Biosorbent for Heavy Metal and Dye Removal: An Overview. Desalination, 175, 305-316. http://dx.doi.org/10.1016/j.desal.2004.10.014
[9]
Amin, M.N., Kaneco, S., Kitagawa, T., Begum, A., Katsumata, H., Suzuki, T. and Ohta, K. (2006) Removal of Arsenic in Aqueous Solutions by Adsorption onto Waste Rice Husk. Industrial & Engineering Chemistry Research, 45, 8105-8110. http://dx.doi.org/10.1021/ie060344j
[10]
Abbas, M.N. and Abbas, F.S. (2013) Utilization of Iraqi Rice Husk in the Removal of Heavy Metals from Wastewater. Research Journal of Environmental and Earth Sciences, 5, 370-380.
[11]
Mondal, P., Majumder, C.B. and Mohanty, B. (2007) Removal of Trivalent Arsenic (As(III)) from Contaminated Water by Calcium Chloride (CaCl2)-Impregnated Rice Husk Carbon. Industrial & Engineering Chemistry Research, 46, 2550-2557. http://dx.doi.org/10.1021/ie060702i
[12]
Agrafioti, E., Kalderis, D. and Diamadopoulos, E. (2014) Arsenic and Chromium Removal from Water Using Biochars Derived from Rice Husk, Organic Solid Wastes and Sewage Sludge. Journal of Environmental Management, 133, 309-314. http://dx.doi.org/10.1016/j.jenvman.2013.12.007
[13]
Williams, P.T. and Nugranad, N. (2000) Comparison of Products from the Pyrolysis and Catalytic Pyrolysis of Rice Husks. Energy, 25, 493-513. http://dx.doi.org/10.1016/S0360-5442(00)00009-8
[14]
Xiong, L., Sekiya, E.H., Wada, S. and Saito, K. (2009) Facile Catalytic Combustion of Rice Husk and Burning Temperature Dependence of the Ashes. ACS Applied Materials and Interfaces, 1, 2509-2518. http://dx.doi.org/10.1021/am9004623
[15]
Razavi, Z., Mirghaffari, N. and Rezaei, B. (2015) Performance Comparison of Raw and Thermal Modified Rice Husk for De-Contamination of Oil Polluted Water. Clean-Soil, Air, Water, 43, 182-190. http://dx.doi.org/10.1002/clen.201300753
[16]
Genieva, S., Turmanova, S., Dimitrov, A., Petkov, P. and Vlaevm, L. (2012) Thermal Degradation of Rice Husks on a Pilot Plant Utilization of the Products as Adsorbents for Oil Spill Cleanup. Journal of Thermal Analysis & Calorimetry, 110, 111-118. http://dx.doi.org/10.1007/s10973-012-2282-x
[17]
Yavuz, M., Gode, F., Pehlivan, E., Ozmert, S. and Sharma, Y.C. (2008) An Economic Removal of Cu2+ and Cr3+ on the New Adsorbents: Pumice and Polyacrylonitrile/Pumice Composite. Chemical Engineering Journal, 137, 453-461. http://dx.doi.org/10.1016/j.cej.2007.04.030
[18]
Sharma, Y.C., Uma, Upadhyay, S.N. and Weng, C.H. (2008) Studies on an Economically Viable Remediation of Chromium Rich Waters and Wastewaters by PTPS Fly Ash. Colloids & Surfaces A: Physicochemical and Engineering Aspects, 317, 222-228. http://dx.doi.org/10.1016/j.colsurfa.2007.10.015
[19]
Anirudhan, T.S. and Radhakrishnan, P.G. (2008) Thermodynamics and Kinetics of Adsorption of Cu(II) from Aqueous Solutions onto a New Cation Exchanger Derived from Tamarind Fruit Shell. The Journal of Chemical Thermodynamics, 40, 702-709. http://dx.doi.org/10.1016/j.jct.2007.10.005
[20]
Wickramasinghe, S.R., Han, B.B., Zimbron, J., Shen, Z. and Karim, M.N. (2004) Arsenic Removal by Coagulation and Filtration: Comparison of Groundwaters from the United States and Bangladesh. Desalination, 169, 231-244. http://dx.doi.org/10.1016/S0011-9164(04)00530-2