Both independence and independence-separation problems on chessboard graphs have been studied in detail, with hundreds of papers in the broader independence category, and several on the independence-separation problem variant for chessboard graphs. In this paper, the inde-pendence-separation problem is considered on the d-dimensional rook’s graph. A lower bound of k, for , is found for the independence-separation number on the d-dimensional rook’s graph, denoted by . For the case where ,?it is found that when n is odd and , . Conjecture and discussion are added.
References
[1]
Chatham, R.D. (2009) Reflections on the N + k Queens Problem. College Mathematics Journal, 40, 204-210. http://dx.doi.org/10.4169/193113409X469433
[2]
Chatham, R.D., Fricke, G.H. and Skaggs, R.D. (2006) The Queens Separation Problem. Utilitas Mathematica, 69, 129-141.
[3]
Chatham, R.D., Doyle, M., Fricke, G.H., Reitmann, J., Skaggs, R.D. and Wolff, M. (2009) Independence and Domination Separation in Chessboard Graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 68, 3-17.
[4]
Chatham, R.D., Doyle, M., Miller, J.J., Rogers, A.M., Skaggs, R.D. and Ward, J.A. (2009) Algorithm Performance for Chessboard Separation Problems. Journal of Combinatorial Mathematics and Combinatorial Computing, 70, 127-142.
[5]
Zhao, K. (1998) The Combinatorics of Chessboards. PhD Thesis, CUNY, York.
[6]
Brualdi, R.A., Kiernan, K.P., Meyer, S.A. and Schroeder, M.W. (2013) Patterns of Alternating Sign Matrices. Linear Algebra and Its Applications, 438, 3967-3990. http://dx.doi.org/10.1016/j.laa.2012.03.009