全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Light Reflection by Cuticles of Chrysina Jewel Scarabs: Optical Measurements, Morphology Characterization, and Theoretical Modeling

DOI: 10.4236/opj.2016.67017, PP. 146-163

Keywords: Structural Color, Structural Chirality, Natural Broad Band Reflector, Circular Polarization, Jewel Scarab, Chitin Refractive Index, Uric Acid Refractive Index, Left-Handed Twisted Structure, Bouligand-Type Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cuticles of some Chrysina scarabs are characterized by flat, graded, and twisted structures of nanosized chitin fibrils. As inferred from SEM images, each species has its own spatial period or pitch P which is dependent on the depth z through the cuticle. From Berreman’s formalism, taking into account the corresponding P(z) dependence, we evaluate reflection spectra of C. aurigans and C. chrysargyrea scarabs. The spectra display the main spectral features observed in the measured ones when small sections of the cuticles are illuminated with non-polarized light, for wavelengths between 300 and 1100 nm. By considering these twisted structures as 1D photonic crystals, an approach is developed to show how the broad band characterizing the reflection spectra arises from a narrow intrinsic photonic band width, whose spectral position moves through visible and near infrared wavelengths. The role of the epicuticle that covers the twisted structures is analyzed in terms of a waxy layer acting as an anti-reflecting coating that also shows low levels of light scattering.

References

[1]  Gralak, B., Tayeb, G. and Enoch S. (2001) Morpho Butterflies Wings Color Modeled with Lamellar Grating Theory. Optics Express, 9, 567-578.
http://dx.doi.org/10.1364/OE.9.000567
[2]  Welch, V.L. and Vigneron J.P. (2007) Beyond Butterflies—The Diversity of Biological Photonic Crystals. Optical and Quantum Electronics, 39, 295-303.
http://dx.doi.org/10.1007/s11082-007-9094-4
[3]  Sharma V., Crne, M., Park, J.O. and Srinivasarao M. (2014) Bouligand Structures Underlie Circularly Polarized Iridescence of Scarab Beetles: A Closer View. Materials Today: Proceedings, 1S, 161-171.
http://dx.doi.org/10.1016/j.matpr.2014.09.019
[4]  Michelson, A.A. (1911) On Metallic Colouring in Beetles and Insects. Philosophical Magazine Series 6, 21, 554-567.
http://dx.doi.org/10.1080/14786440408637061
[5]  Kinoshita, S. (2008) Structural Colors in the Realm of Nature. World Scientific, New Jersey.
[6]  Mitov, M. (2012) Cholesteric Liquid Crystals with a Broad Light Reflection Band. Advanced Materials, 24, 6260-6276.
http://dx.doi.org/10.1002/adma.201202913
[7]  Hernández-Jiménez, M., Azofeifa, D.E., Libby, E., Barboza-Aguilar, C., Solís, A., Arce-Marenco, L., García-Aguilar, I., Hernández, A. and Vargas, W.E. (2014) Qualitative Correlation between Structural Chirality through the Cuticle of Chrysina aurigans Scarabs and Left-Handed Circular Polarization of the Reflected Light. Optical Materials Express, 4, 2632-2645.
http://dx.doi.org/10.1364/OME.4.002632
[8]  Fernández del Río, L., Arwin, H. and Järrendahl, K. (2014) Polarizing Properties and Structural Characteristics of the Cuticle of the Scarab Beetle Chrysina gloriosa. Thin Solid Films, 571, 410-415.
http://dx.doi.org/10.1016/j.tsf.2013.11.149
[9]  Jewell, S.A., Vukusic, P. and Roberts, N.W. (2007) Circularly Polarized Colour Reflection from Helicoidal Structures in the Beetle Plusiotis boucardi. New Journal of Physics, 9, 99.
http://dx.doi.org/10.1088/1367-2630/9/4/099
[10]  Ching, S.Y., Li, G., Tam, H.L., Goh, D.T.P., Goh, J.K.L. and Cheah, K.W. (2014) Chirality in Rhomborhina gigantea Beetle. Optical Materials Express, 4, 2340-2345.
http://dx.doi.org/10.1364/OME.4.002340
[11]  Brink, D.J., van der Berg, N.G., Prinsloo, L.C. and Hodgkinson, I.J. (2007) Unusual Coloration in Scarabaeid Beetles. Journal of Physics D: Applied Physics, 40, 2189.
http://dx.doi.org/10.1088/0022-3727/40/7/050
[12]  Libby, E., Azofeifa, D.E., Hernández-Jiménez, M., Barboza-Aguilar, C., Solís, A., García-Aguilar, I., Arce-Marenco, L., Hernández, A. and Vargas, W.E. (2014) Light Reflection by the Cuticle of C. aurigans Scarabs: A Biological Broadband Reflector of Left Handed Circularly Polarized Light. Journal of Optics, 16, Article ID: 082001.
http://dx.doi.org/10.1088/2040-8978/16/8/082001
[13]  Azofeifa, D.E., Hernández-Jiménez, M., Libby, E., Solís, A., Barboza-Aguilar, C. and Vargas, W.E. (2015) A Quantitative Assessment Approach of Feasible Optical Mechanisms Contributing to Structural Color of Golden-Like Chrysina aurigans Scarab Beetles. Journal of Quantitative Spectroscopy and Radiative Transfer, 160, 63-74.
http://dx.doi.org/10.1016/j.jqsrt.2015.03.014
[14]  Aguilar-Gutierrez, O.F. and Rey, A.D. (2014) Structure Characterisation Method for Ideal and Non-Ideal Twisted Plywoods. Soft Matter, 10, 9446-9453.
http://dx.doi.org/10.1039/C4SM01803F
[15]  Aguilar-Gutierrez, O.F. and Rey, A.D. (2014) Chiral Graded Structures in Biological Plywoods and in the Beetle Cuticle. Colloids and Interface Science Communications, 3, 18-22.
http://dx.doi.org/10.1016/j.colcom.2015.04.001
[16]  Campos-Fernández, C., Azofeifa, D.E., Hernández-Jiménez, M., Ruiz-Ruiz, A. and Vargas, W.E. (2011) Visible Light Reflection Spectra from Cuticle Layered Materials. Optical Materials Express, 1, 85-100.
http://dx.doi.org/10.1364/OME.1.000085
[17]  Saba, M., Wilts, B.D., Hielscher, J. and Schroder-Turk, G.E. (2014) Absence of Circular Polarization in Reflections of Butterfly Wing Scales with Chiral Gyroid Structure. Materials Today: Proceedings, 1, 193-208.
http://dx.doi.org/10.1016/j.matpr.2014.09.023
[18]  McDonald, L.T., Finlayson, E.D. and Vukusic, P. (2015) Untwisting the Polarization Properties of Light Reflected by Scarab Beetles. Bioinspired, Biointegrated, Bioengineered Photonic Devices III (Proceeding of SPIE), San Francisco, 7-8 February 2015, Vol. 9341.
[19]  Arwin, H., Fernández del Río, L. and Järrendahl, K. (2014) Comparison and Analysis of Mueller-Matrix Spectra from Exoskeletons of Blue, Green and Red Cetonia aurata. Thin Solid Films, 571, 739-743.
http://dx.doi.org/10.1016/j.tsf.2014.02.012
[20]  McCall, M.W. (2009) Simplified Theory of Axial Propagation through Structurally Chiral Media. Journal of Optics A: Pure and Applied Optics, 11, Article ID: 074006.
http://dx.doi.org/10.1088/1464-4258/11/7/074006
[21]  Topf, R.D.M. and McCall, M.W. (2014) Modes of Structurally Chiral Lasers. Physical Review A, 90, Article ID: 053824.
http://dx.doi.org/10.1103/PhysRevA.90.053824
[22]  Berreman, D.W. (1972) Optics in Stratified and Anisotropic Media: 4 × 4 Matrix Formalism. Journal of the Optical Society of America, 62, 502-510.
http://dx.doi.org/10.1364/JOSA.62.000502
[23]  Stallinga, S. (1999) Berreman 4 × 4 Matrix Method for Reflective Liquid Crystal Displays. Journal of Applied Physics, 85, 3023-3031.
http://dx.doi.org/10.1063/1.369638
[24]  WÖhler, H., Hass, G., Fritsch, M. and Mlynski, D.A. (1988) Faster 4 × 4 Matrix Method for Uniaxial Inhomogenous Media. Journal of the Optical Society of America, 5, 1554-1557.
http://dx.doi.org/10.1364/JOSAA.5.001554
[25]  Azofeifa, D.E., Arguedas, H. J. and Vargas, W.E. (2012) Optical Properties of Chitin and Chitosan Biopolymers with Application to Structural Color Analysis. Optical Materials, 35, 175-183.
http://dx.doi.org/10.1016/j.optmat.2012.07.024
[26]  Richards, A.G. (1951) The Integument of Arthropods. University of Minnesota Press, Minneapolis.
[27]  Caveney, S. (1971) Cuticle Reflectivity and Optical Activity in Scarab Beetles: The Role of Uric Acid. Proceedings of the Royal Society of London B, 178, 205-225.
http://dx.doi.org/10.1098/rspb.1971.0062
[28]  Fink, D.A., Sours, R.E. and Swift, J.A. (2003) Modulated Uric Acid Growth in the Presence of Acridine Dyes. Chemistry of Materials, 15, 2718-2723.
http://dx.doi.org/10.1021/cm021751y
[29]  Vargas, W.E., Azofeifa, D.E. and Arguedas, H.J. (2013) índices de refracción de la quitina, el quitosano y el ácido úrico con aplicación en análisis de color estructural. óptica Pura y Aplicada, 46, 55-72.
http://dx.doi.org/10.7149/OPA.46.1.55
[30]  Yang, S.K., Varadan, V.V., Lakhtakia, A. and Varadan, V.K. (1991) Reflection and Transmission of Elastic Waves by a Structurally Chiral Arrangement of Identical Uniaxial Layers. Journal of Physics D: Applied Physics, 24, 1601-1608.
http://dx.doi.org/10.1088/0022-3727/24/9/012
[31]  Guarín-Zapata, N., Gomez, J., Yaraghi, N., Kisailus, D. and Zavattieri, P.D. (2015) Shear Wave Filtering in Naturally-Ocurring Bouligand Structures. Acta Biomaterialia, 23, 11-20.
http://dx.doi.org/10.1016/j.actbio.2015.04.039
[32]  Weaver, J.C. Milliron, G.W., Miserez, A., Evans-Lutterodt, K., Herrera, S., Gallana, I., Mershon, W.J., Swanson, B., Zavattieri, P., DiMasi, E. and Kisailus, D. (2012) The Stomatopod Dactyil Club: A Formidable Damage-Tolerant Biological Hammer. Science, 336, 1275-1280.
http://dx.doi.org/10.1126/science.1218764
[33]  Thomas, D.B., Seago, A. and Robacker, D.C. (2007) Reflections of Golden Scarabs. American Entomologist, 53, 224-230.
http://dx.doi.org/10.1093/ae/53.4.224
[34]  de Gennes, P.G. and Prost, J. (2010) The Physics of Liquid Crystals. Oxford University Press, Oxford.
[35]  Joannopoulos, J.D., Johnson, S.G., Winn, J.N. and Meade, R.D. (2008) Photonic Crystals Molding the Flow of Light. Princeton University Press, Oxford.
[36]  Fan, C.Z., Wang, J.Q., He, J.N., Pei, D. and Liang, E.J. (2013) Theoretical Study on the Photonic Band Gap in One-Dimensional Photonic Crystals with Graded Multilayer Structure. Chinese Physics B, 22, Article ID: 074211.
http://dx.doi.org/10.1088/1674-1056/22/7/074211
[37]  Arwin, H., Berlind, T., Johs, B. and Järrendahl, K. (2013) Cuticle Structure of the Scarab Beetle Cetonia aurata Analyzed by Regression Analysis of Mueller-Matrix Ellipsometric Data. Optics Express, 21, 22645-22656.
http://dx.doi.org/10.1364/OE.21.022645
[38]  Heavens, O.S. (1991) Optical Properties of Thin Solid Films. Dover, New York.
[39]  Vargas, W.E. (2011) Light Scattering and Absorption by Non-Homogeneous Materials: The Kubelka-Munk Model. óptica Pura y Aplicada, 44, 163-183.
[40]  Maheu, B., Letoulouzan, J.N. and Gouesbet, G. (1984) Four-Flux Model to Solve the Scattering Transfer Equation in Terms of Lorenz-Mie parameters. Applied Optics, 23, 3353-3362.
http://dx.doi.org/10.1364/AO.23.003353
[41]  Vargas, W.E. (1998) Generalized Four-Flux Radiative Transfer Models. Applied Optics, 37, 2615-2623.
http://dx.doi.org/10.1364/AO.37.002615
[42]  Locke, M. (1960) The Cuticle and Wax Secretion in Calpodes ethlius (Lepidoptera, Hesperidae). Quarterly Journal of Microscopical Science, 101, 333-338.
[43]  Vargas, W.E. and Niklasson, G.A. (1997) Forward Average Path-Length Parameter in Four-Flux Radiative Transfer Models. Applied Optics, 36, 3735-3738.
http://dx.doi.org/10.1364/AO.36.003735
[44]  Vargas, W.E. and Niklasson, G.A. (1997) Forward-Scattering Ratios and Average Pathlength Parameter in Radiative Transfer Models. Journal of Physics: Condensed Matter, 9, 9083-9096.
http://dx.doi.org/10.1088/0953-8984/9/42/021
[45]  Vargas, W.E. and Niklasson, G.A. (1997) Applicability Conditions of the Kubelka-Munk Theory. Applied Optics, 36, 5580-5586.
http://dx.doi.org/10.1364/AO.36.005580

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133