Combined Geoelectrical Approach DC and IP Methods in the Identification of the Mineralized Bodies Parallel to the NE-SW Tectonic Line of Kadei River: Case of Quartz or Pegmatite Gold Bearing Veins of Ngoura Subdivision (East Cameroon)
A geophysical investigation of subsurface structures using the Syscal Junior 48 resistivity-meter was conducted in Ngoura subdivision (East Cameroon) following a combined geoelectrical direct current (DC) approach involving Resistivity and IP methods. This investigation was allowed to collect data on forty-five (45) profiling lines at three acquisition levels (AB = 100 m, MN = 10 m; AB = 200 m, MN = 20 m and AB = 500 m, MN = 50 m) and two electric panels L1 and L4, using the Schlumberger array. Processing, modeling and interpretation of data collected using the Winsev, Res2Dinv and Surfer software helped in highlighting a conductive and strongly mineralized discontinuity in granite formations, which lined up with the NE-SW Kadei tectonic line. It extends beyond 100 m depth over an average width of 600 m. The mineralization associated with this discontinuity is identified by a high concentration of disseminated metalliferous minerals in quartz or pegmatite veins. The mining reconnaissance works in the study area and those of several authors have characterized this anomaly to a lode gold quartz or large pegmatite. The results of this study correlate with geological and tectonic data for the region marked by NE-SW Kadei tectonic line. Therefore, they confirm the reliability of a geoelectrical DC investigation method combining Resistivity and IP to the identification of ore bodies.
References
[1]
Kim, S., Yoon, M.J., Kim, S.G. and Kwon, D.J. (2009) Exploration Report Colomine Placer Gold Project Cameroon. Geotech Consultant Co., Ltd., Seoul, 87.
[2]
Cornachia, M. and Dars, R. (1983) Un trait majeur du continent africain. Les Linéaments Centre africains du Cameroun au Golfe d’Aden. Bulletin de la Societe Geologique de France, 7, 102-109.
[3]
Rolin, P. (1995) La zone de décrochement panafricain des Oubanguides en République Centrafricaine. Comptes Rendus de l’Académie des Sciences, Paris, 320, 63-69.
[4]
Mvondo, H., Den-Brok, S.W.J and Mvondo-Ondoa, J. (2003) Evidence for Symmetric Extension and Exhumation of the Yaoundé Nappe (Pan-African Fold Belt, Cameroon). Journal of African Earth Sciences, 35, 215-231.
http://dx.doi.org/10.1016/S0899-5362(03)00017-4
[5]
Mvondo, H., Owona, S., Mvondo-Ondoa, J. and Essono, J. (2007) Tectonic Evolution of the Yaoundé Segment of the Neoproterozoic Central African Orogenic Belt in Southern Cameroon. Canadian Journal of Earth Sciences, 44, 433- 444. http://dx.doi.org/10.1139/e06-107
[6]
Olinga, J.B., Mpesse, J.E., Minyem, D., Ngako, V., Ndougsa-Mbarga, T. and Ekodeck, G.E. (2010) The Awaé-Ayos Strike-Slip Shear Zones (Southern-Cameroon): Geometry, Kinematics and Significance in the Late Panafrican Tectonics. Neues Jahrbuch für Geologie und Palaontologie, 257, 1-11.
[7]
Regnoult, J.M. (1986) Synthèse géologique du Cameroun. DMG/MINMEE, 119 p.
[8]
Vairon, J., Edimo, A., Simeon, Y. and Vadala, P. (1986) Protocole d’accord “pour la recherche des minéralisations d’or dans la province aurifère de l’Est” Cameroun. Rapport du BRGM, Mission or Batouri, deuxième et troisième phase, 251 p.
[9]
Gazel, J. and Giraudie, C. (1965) Notice explicative sur la région Abong-Mbang Ouest de la carte géologique de reconnaissance. Mémoire du BRGM, No. 92. Dir. Mines et Géol., Cameroun, 29 p.
[10]
Meying, A., Ndougsa-Mbarga, T. and Manguelle-Dicoum, E. (2009) Evidence of Fractures from the Image of the Subsurface in the Akojolinga-Ayos Area (Cameroon) by Combining the Classical and the Bostick Approaches in the Interpretation of Audio-Magnetotelluric Data. Journal of Geology and Mining Research, 1, 159-171.
[11]
Ndougsa-Mbarga, T., Meying, A., Bisso, D., Layu, D.Y., Sharma, K.K. and Manguelle-Dicoum, E. (2011) Audiomagnetotellurics (AMT) Soundings Based on the Bostick Approach and Evidence of Tectonic Features along the Northern Edge of the Congo Craton, in the Messamena/Abong-Mbang Area (Cameroon). Journal of Indian Geophysical Union, 15, 145-159.
[12]
Keary, P. and Brooks, M. (1991) An Introduction to Geophysical Exploration. 2nd Editions, Blackwell Scientific Publications, Oxford, 254 p.
[13]
Parasnis, D.S. (1997) Principles of Applied Geophysics. 5th Edition, Chapman and Hall, London, 104-176.
[14]
Ward, S.H. (1990) Resistivity and Induced Polarization Methods. In: Ward, S.H., Ed., Geotechnical and Environmental Geophysics, Vol. 2, Society of Exploration Geophysicists, Tulsa, 147-190.
[15]
Kiberu, J. (2002) Induced Polarization and Resistivity Measurements on a Suite of near Surface soil Samples and Their Empirical Relationships to Selected Measured Engineering Parameters. MSc Thesis Submitted at ITC, Enschede.
[16]
Chapellier, D. (2000) Prospection électrique en surface. Cours de géophysique. Université de Lausanne, Institut Francais de Pétrole, Lausanne, 98 p.
[17]
Fink, J.B., McAlester, E.O., Sternberg, B.K., Ward, S.H. and Wieduwilt, W.G. (1990) Induced Polarization, Applica tions and Case Studies. Society of Exploration Geophysicists, Tulsa, 414.
[18]
Sumner, J.S. (1976) Principles of Induced Polarization for Geophysical Exploration. Elsevier, Amsterdam, 227.
[19]
Loke, M.H. (2000) Electrical Imaging Surveys for Environmental and Engineering Studies: A Practical Guide to 2-D and 3-D Surveys. 61.
[20]
Loke, M.H. (2010) Res2Dinv ver. 3.59 for Windows XP/Vista/7, 2010. Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method. Geoelectrical Imaging 2D & 3D Geotomo Software 2010, Malaysia.
[21]
Loke, M.H. and Barker, R.D. (1996) Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by a Quasi-Newton Method. Geophysical Prospecting, 44, 131-152. http://dx.doi.org/10.1111/j.1365-2478.1996.tb00142.x
[22]
Jenny, J. and Borreguero, M. (1999) Winsev 5, 1-D Inversion Software.
[23]
Dickenson, K. Surfer Version 9.00, Surface Mapping System Copyright ? 1993-2009. Golden Software, Inc., Golden.
[24]
Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A. (1990) Applied Geophysics. 2th Edition, Cambridge University Press, Cambridge, 770. http://dx.doi.org/10.1017/CBO9781139167932
[25]
Tijani, M.N., Osinowo, O.O. and Ogedengbe, O. (2009) Mapping of Sub-Surface Fracture Systems Using Integrated Electrical Resistivity Profiling and VLF-EM Methods: A Case Study of Suspected Gold Mineralization. RMZ— Materials and Geoenvironment, 56, 415-436.
[26]
Louis, I.F., Raftopoulos, D., Goulis, I. and Louis, F.I. (2002) Geophysical Imaging of Faults and Fault Zones in the Urban Complex of Ano Liosia Neogene Basin, Greece: Synthetic Simulation Approach and Field Investigations. Journal of Electrical & Electronics Engineering, Special Issue, 269-285.
[27]
Gouet, D.H., Ndougsa-Mbarga, T., Meying, A., Assembe, S.P. and Man-MvelePepogo, A.D. (2013) Gold Mineralization Channels Identification in the Tindikala-Boutou Area (Eastern-Cameroon) Using Geoelectrical (DC & IP) Methods: A Case Study. International Journal of Geosciences, 4, 643-655. http://dx.doi.org/10.4236/ijg.2013.43059
[28]
Singh, S.B. and Stephen, J. (2004) Deep Resistivity Sounding Studies in Detecting Shear Zones: A Case Study from the Southern Granulite Terrain of India. Journal of Asian Earth Sciences, 28, 55-62.
http://dx.doi.org/10.1016/j.jseaes.2004.09.014
[29]
Holliday, J.R. and Cooke, D.R. (2007) Advances in Geological Models and Exploration Methods for Copper ± Gold Porphyry Deposits. Ore Deposits and Exploration Technology, Paper 53, 791-809.
[30]
Salmirinne, H. and Turunen, P. (2007) Ground Geophysical Characteristics of Gold Targets in the Central Lapland Greenstone Belt. Geological Survey of Finland, Special, Paper 44, 209-223.
[31]
Meju, M.A. (2002) Geoelectromagnetic Exploration for Natural Resources: Models, Case Studies and Challenges. Surveys in Geophysics, 23, 133-205. http://dx.doi.org/10.1023/A:1015052419222
[32]
Campbell, D.L. and Fitterman, D.V. (2000) Geoelectricalal Methods for Investigating Mine Dumps. Proceedings of the 5th International Conference on Acid Rock Drainage (ICARD 2000), Denver, 21-24 May 2000, 1513-1523.
[33]
Dahlin, T., Rosquist, H. and Leroux, V. (2010) Resistivity-IP Mapping for Landfill Applications. First Break, 28, 101- 105.
[34]
Tahmasbinejad, H., Hoseini, F.Z., Mumipour, M., Kaboli, A. and Najib, M. (2012) Delineation of the Aquifer in the Curin Basin, South of Zahedan City, Iran. The Open Geology Journal, 6, 1-6.
http://dx.doi.org/10.2174/1874262901206010001
[35]
Wippern, J. and Seyferle, W. (1966) Travaux de Recherche des gisements d’or de Bétaré-Oya (Cameroun). Rapport IPCO, 73.