全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Deceleration Parameter Q(Z) and Examining If a Joint DM-DE Model Is Feasible, with a Revisit to the Question of Cosmic Singularities

DOI: 10.4236/jhepgc.2016.23033, PP. 362-382

Keywords: Inflaton, Non Zero Graviton Mass, Emergent Structure, BBN, Singularities

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is a revisit to a 2011 document, with the addition of results pertinent to singularities in the case of a single repeating universe, as well as when the multiverse voids the necessity of a classical GR singularity. When a classical singularity does not exist, it impacts the formation of a massive graviton for reasons brought up, and allows for reacceleration of the universe due to massive gravitons. The existence of massive gravitons would also affect initial entropy, and also lead to the datum, that a calculated inflaton \"\" may re-emerge after fading out in the aftermath of inflation. The inflaton may be a contributing factor, with non-zero graviton mass, in reacceleration of the universe a billion years ago. The inflaton is a source of reacceleration of the universe, especially if the effects of a re-emergent inflaton are in tandem with the appearance of macro effects of a small graviton mass, leading to a speed up of the rate of expansion of the universe one billion years ago, at red shift value of Z ~ 0.423. We find that the graviton being massless or massive directly affects graviton contributions to reacceleration of the universe, with other phenomenological consequences. Finally we give our own counterpart as to how much space-time should be transferred to the present cosmological inflationary cycle which may permit preservation of Planks constant value and support Corda’s brilliant “gravity’s breath” document.

References

[1]  Kauffman, S. (2012) A Self Gravitational Upper Bound on Localized Energy Including that of Virtual Particles and Quantum Fields, which Yield a Passable Dark Energy Density Estimate.
http://arxiv.org/abs/1212.0426
[2]  Beckwith, A. (2011) What Violations of the Null Energy Condition Tell Us about Information Exchange between Prior to Present Universes? How to Obtain Spectral Index Confirmation?
http://vixra.org/abs/1102.0039
[3]  Dye, H.A. (1965) On the Ergodic Mixing Theorem. Transactions of the American Mathematical Society, 118, 123-130. http://dx.doi.org/10.1090/S0002-9947-1965-0174705-8
[4]  Gao, C. (2012) A Model of Nonsingular Universe. Entropy, 14, 1296-1305.
http://dx.doi.org/10.3390/e14071296
[5]  Ng, Y.J. (2008) Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461. http://dx.doi.org/10.3390/e10040441
[6]  Maggiore, M. (2008) Gravitational Waves, Volume 1: Theory and Experiment. Oxford University Press, Oxford.
[7]  Marklund, M., Brodin, G. and Shukla, P. (1999) Interaction of Neutrinos and Gravitons with Plasmas in the Universe. Physica Scripta, T82, 130-132.http://dx.doi.org/10.1238/Physica.Topical.082a00130
[8]  Battisti, M.V. (2009) Cosmological Bounce from a Deformed Heisenberg Algebra. Physical Review D, 79, Article ID: 083506. http://dx.doi.org/10.1103/PhysRevD.79.083506
[9]  Fuller, G. and Kishimoto, C. (2009) Quantum Coherence of Relic Neutrinos. Physical Review Letters, 102, Article ID: 201303. http://dx.doi.org/10.1103/PhysRevLett.102.201303
[10]  Maartens, R. (2005) Brane World Cosmology. In: Papantronopoulos, Ed., The Physics of the Early Universe, Springer, Heidelberg, 213-247.
[11]  Maartens, R. (2004) Brane-World Gravity. Living Reviews in Relativity, 7, 7.
http://www.livingreviews.org/lrr-2004-7
http://dx.doi.org/10.12942/lrr-2004-7
[12]  Rubakov, V. (2002) Classical Theory of Gauge Fields. Princeton University Press, Princeton.
[13]  Rubakov, V. (2005) Proceeding of Les Houches Summer School on Theoretical Physics, Session 84: Particle Physics beyond the Standard Model.
[14]  Rubakov, V.A. and Tinyakov, P.G. (2008) Infrared-Modified Gravities and Massive Gravitons. Physics-Uspekhi, 51, 759-792.
http://arxiv.org/abs/0802.4379
http://dx.doi.org/10.1070/pu2008v051n08abeh006600
[15]  Dubovsky, S., Flauger, R., Starobinsky, A. and Tkachev, I. (2010) Signatures of a Graviton Mass in the Cosmic Microwave Background. Report UTTG-06-09, TCC-23- 09, Physical Review, D81, Article ID: 023523. http://arxiv.org/abs/0907.1658 http://dx.doi.org/10.1103/physrevd.81.023523
[16]  Alves, M., Miranda, O. and de Araujo, J.J. (2009) Can Massive Gravitons be an Alternative to Dark Energy? http://arxiv.org/abs/0907.5190
[17]  Beckwith, A.W. (2015) Deceleration Parameter Q(Z) in Four and Five Dimensional Geometries, and Implications of Gra-Viton Mass In Mimicking De in both Geometries. http://vixra.org/pdf/1002.0056v1.pdf
[18]  Beckwith, A.W. (2011) Identifying a Kaluza Klein Treatment of a Graviton. Journal of Cosmology, 13.
http://journalofcosmology.com/BeckwithGraviton.pdf
[19]  Padmanabhan, T. (2006) An Invitation to Astrophysics. Vol. 8, World Scientific Series in Astronomy and Astrophysics, New York.
[20]  Padmanabhan, T. (2000) Theoretical Astrophysics, Volume 1, Astrophysical Processes. Cambridge University Press, Cambridge.
[21]  Taveras, V. (2008) Corrections to the Friedmann Equations from LQG for a Universe with a Free Scalar Field. Physical Review, D78, Article ID: 064072.
http://arxiv.org/abs/0807.3325
http://dx.doi.org/10.1103/PhysRevD.78.064072
[22]  t’Hooft, G. (2006) The Mathematical Basis for Deterministic Quantum Mechanics.
http://arxiv.org/PS_cache/quant-ph/pdf/0604/0604008v2.pdf
[23]  t’Hooft, G. (2002) Determinism beneath Quantum Mechanics.
http://arxiv.org/PS_cache/quant-ph/pdf/0212/0212095v1.pdf
[24]  Beckwith, A.W. (2001) Classical and Quantum Models of Density Wave Transport: A Comparative Study. PhD Dissertation, University of Houston, Houston.
[25]  Beckwith, A.W. (2006) A New S-S’ Pair Creation Rate Expression Improving upon Zener Curves for I-E Plots. Mod. Physics Letters B, 20, 849-861.
http://arxiv.org/abs/math-ph/0411045
http://dx.doi.org/10.1142/s0217984906011219
[26]  Peskins, M. (1995) Introduction to Quantum Field Theory. Frontiers in Physics, Advanced Book Program, Perseus Books, Cambridge.
[27]  Bashinsky, S. (2005) Coupled Evolution of Primordial Gravity Waves and Relic Neutrinos.
http://arxiv.org/abs/astro-ph/0505502
[28]  Giovannini, M. (2006) Non Topological Gravitating Defects in 5 Dimensional Space. Classical and Quantum Gravity, 23, L73-L80. http://dx.doi.org/10.1088/0264-9381/23/23/L01
[29]  Matarre, S. (2009) Lecture, International School of Astro Particle Physics. Como, Italy.
[30]  Raffert, G. (2009) Erice Nuclear Physics School, Private Conversation.
[31]  Beckwith, A. (2010) Energy, Neutrino Physics and the Lithium Problem: Why There Are Stars with Essentially No Lithium Due to Serious Lithium Deficiency in Certain Spatial Regions in the Early Universe? Progress in Particle and Nuclear Physics, 64, 426-428. http://dx.doi.org/10.1016/j.ppnp.2009.12.066
[32]  Wechsler, R.H. (2001). Dark Halo Merging and Galaxy Formation. PhD Thesis.
http://risa.stanford.edu/thesis.php
[33]  Eberle, B., Ringwald, A., Song, L. and Weiler, T.J. (2004) Relic Neutrino Absorption Spectroscopy. Report Number DESY 03-219, SLAC-PUB-10302, Physical Review, D70, Article ID: 023007.
http://dx.doi.org/10.1103/physrevd.70.023007
http://arxiv.org/abs/hep-ph/0401203
[34]  Valev, D. (2008) Neutrino and Graviton Rest Mass Estimations by a Phenomenological Approach. Aerospace Re- search in Bulgaria, 22, 68-82. http://arxiv.org/abs/hep-ph/0507255
[35]  Beckwith, A. (2010) Applications of Euclidian Snyder Geometry to the Foundations of Space Time Physics. http://vixra.org/abs/0912.0012
[36]  Kay, B. (2006) Quantum Field Theory in Curved Spacetime. In: Franciose, J.-P., Naber, G. and Tsun. T., Eds., The Encyclopedia of Mathematical Physics, Vol 5, General Relativity, Quantum Gravity, String Theory and M. Theory, Academic (Elsevier) Publishing Company, Amsterdam, 180-190.
[37]  Beckwith, A.W. (2011) Is Nature Fundamentally Continuous or Discrete, and How Can These Two Different but Very Useful Conceptions Be Fully Reconciled? (Condensed Version)
http://vixra.org/abs/1102.0019
[38]  Padmanabhan, T. (2011) Lessons from Classical Gravity about the Quantum Structure of Spacetime.
http://arxiv.org/pdf/1012.4476.pdf
[39]  Beckwith, A.W. (2011) How to Use the Cosmological Schwinger Principle for Energy Flux, Entropy, and “Atoms of Space-Time” to Create a Thermodynamic Space-Time and Multiverse. Journal of Physics: Conference Series, 306, Article ID: 012064.
http://dx.doi.org/10.1088/1742-6596/306/1/012064
http://iopscience.iop.org/1742-6596/306/1/012064/
[40]  Kiefer, C., Polarski, D. and Starobinsky, A.A. (1998) Quantum-to-Classical Transition for Fluctuations in the Early Universe. International Journal of Modern Physics, D7, 455-462.
http://arxiv.org/abs/gr-qc/9802003
http://dx.doi.org/10.1142/s0218271898000292
[41]  Penrose, R. (2007) Conformal Cyclic Cosmology, Dark Matter, and Black Hole Evaporation. IGC Inaugural Conference, Penn State University, Pennsylvania, 7-11 August2007.
[42]  Penrose, R. (2006) Before the Big Bang, an Outrageous New Perspective and Its Implications for Particle Physics. Proceedings of the European Particle Accelerator Conference (EPAC, 2006), 2759-2763,
[43]  Penrose, R. (2011) Cycles of Time, an Extrardinary New View of the Universe. Alfred A. Knoff Press, Oxford.
[44]  Beckwith, A. (2014) Analyzing Black Hole Super radiance Emission of Particles/Energy from a Black Hole as a Gedankern Experiment to Get Bounds on the Mass of a Graviton. Hindawi Publishing Corporation, Advances in High Energy Physics, 2014, Article ID 230713.
http://dx.doi.org/10.1155/2014/230713
http://www.researchgate.net/publication/261709517_httpwww.hindawi.comjournalsahep2014230713
[45]  Poplawski, N. (2011) Cosmological Constant from QCD Vacuum and Torsion. Annalen der Physik, 523, 291-295. http://dx.doi.org/10.1002/andp.201000162 http://arxiv.org/abs/1005.0893
[46]  Kolb, E. and Turner, M. (1990) The Early Universe, Frontiers in Physics. Advanced Book Program, Addison and Welsley Publishing Company, Menlo Park.
[47]  Feynman, R. and Hibbs, A. (2005) Quantum Mechanics and Path Integrals. Dover Publications Inc., New York.
[48]  Park, D.K., Kim, H. and Tamarayan. S. (2002) Nonvanishing Cosmological Constant of Flat Universe in Brane World Scenarios. Physics Letters B, 535, 5-10. http://dx.doi.org/10.1016/S0370-2693(02)01729-X
[49]  De La Vega, H. (2009) Lecture on Cosmology, and Cosmological Evolution, as Given as a Lecture at the ISAPP (International School of Astro Particle Physics (2009)). Cosmic Microwave Background and Fundamental Interaction Physics, Como, 8-16 July 2009.
[50]  Camp, J. and Cornish, N. (2004) Gravitational Wave Astronomy. Annual Review of Nuclear and Particle Science, 54, 525-577. http://dx.doi.org/10.1146/annurev.nucl.54.070103.181251
[51]  Grishkuk, L. (2008) Discovering Relic Gravitational Waves in Cosmic Microwave Background Radiation.
http://arxiv.org/abs/0707.3319
[52]  Tinyakov, P. (2007) Course 12 Giving Mass to the Graviton. In: Bernadeau, F., Grojean, C. and Dalibard. J., Eds., Particle Physics, and Cosmology, the Fabric of Space-Time, Part of Les Houches, Session 86, Elsevier, Oxford, 471- 499. http://dx.doi.org/10.1016/s0924-8099(07)80038-2
[53]  Novello, M. and Neves, R.P. (2003) The Mass of the Graviton and the Cosmological Constant. Classical and Quantum Gravity, 20, L67-L73. http://dx.doi.org/10.1088/0264-9381/20/6/101
[54]  Corda, C. (2012) Primordial Gravity’s Breath. http://arxiv.org/pdf/1110.1772
[55]  Abbott, B.P., et al. (2016) LIGO Scientific Collaboration and Virgo Collaboration. Physical Review Letters, 116, Article ID: 061102. http://dx.doi.org/10.1103/PhysRevLett.116.061102
[56]  The LIGO Scientific Collaboration, the Virgo Collaboration. Tests of General Relativity with GW150914. Physical Review Letters, 116, Article ID: 221101. http://arxiv.org/abs/1602.03841
[57]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. Inter- national Journal of Modern Physics, D18, 2275-2282.
http://dx.doi.org/10.1142/s0218271809015904
http://arxiv.org/abs/0905.2502
[58]  Kuchiev, M.Y. (1988) Can gravity appear due to polarization of instantons in SO(4)gauge theory?. Classical and Quantum Gravity, 15, 1895-1913. http://dx.doi.org/10.1088/0264-9381/15/7/008
[59]  Haranas, I. and Gkigkitzis, I. (2014) The Mass of Graviton and Its Relation to the Number of Information According to the Holographic Principle. International Scholarly Research Notices, 2014, Article ID: 718251. http://dx.doi.org/10.1155/2014/718251 http://www.hindawi.com/journals/isrn/2014/718251/

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133