全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Can Thermal Input from a Prior Universe Account for Relic Graviton Production? Implications for the Cosmological Landscape

DOI: 10.4236/jhepgc.2016.23032, PP. 344-361

Keywords: Relic Graviton Production, Cosmological Landscape

Full-Text   Cite this paper   Add to My Lib

Abstract:

The author presents how to make a link between the low temperature and low entropy of pre big bang state of cosmology as given by Carroll and Chen in 2005, to the quantum cosmology conditions predicted by Weinberg when the temperature reaches 1032 degrees Kelvin. We do this bridge building in our model construction as a way to get about the fact that cosmological CMB is limited by a red shift about z = 1100, so in order to get our suppositions consistent with observations, we also examine what happens in our model when we introduce quantization via a shift in values of the Hartle-Hawking wave function from a lower value of nearly zero to one which is set via an upper bound of the Planck’s constant of the order of 360 times the square of the Planck’s mass.

References

[1]  Lloyd, S. (2001) Computational Capacity of the Universe. http://arxiv.org/abs/quant-ph/0110141
[2]  Weinberg, S. (1972) Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley and Sons, Inc., New York.
[3]  Barvinsky, K. and Yu, A. (2006) Thermodynamics from Nothing: Limiting the Cosmological Constant Landscape. Physical Review D, 74, 121502.
[4]  Park., D.K., Kim, H. and Tamarayan, S. (2002) Nonvanishing Cosmological Constant of Flat Universe in Brane-World Senarios. http://arxiv.org/abs/hep-th/0111081
[5]  Guth, A.H. (2003) Eternal Inflation.
http://online.itp.ucsb.edu/online/strings_c03/guth/pdf/KITPGuth_2.pdf
[6]  Wesson, P.S. (2000) Space-Time-Matter: Modern Kaluza-Klein Theory. World Press Scientific, P.t.e., Ltd., Singapore.
[7]  Brustein, R. and De Alwis, S.P. (1990) Non-Perturbative Divergence in Critical String Theory. Physics Letters B, 247, 31-35. http://dx.doi.org/10.1016/0370-2693(90)91044-C
[8]  Traschen, J. (1984) Causal Cosmological Perturbations and Implications for the Sachs-Wolfe Effect. Physical Review D, 29, 1563. http://dx.doi.org/10.1103/PhysRevD.29.1563
[9]  Fontana, G. (2005) Gravitational Wave Propulsion. In: El-Genk, M.S., Ed., CP746, Space Technology and Applications International Forum-STAIF, American Institute of Physics, Melville.
[10]  Sundrum, R., (2005) Extra Dimensions. SLAC Summer Institute: Gravity in the Quantum World and the Cosmos. http://www-conf.slac.stanford.edu/ssi/2005/lec_notes/Sundrum1/sundrum1.pdf
[11]  Buusso, R. and Randall, L. (2001) Holographic Domains of Anti-de Sitter Space.
https://arxiv.org/abs/hep-th/0112080
[12]  Lee, J. and Sorkin, R.D. (1988) Derivation of a Bogomolnyi Inequality In Five Dimensional Kaluza-Klein Theory. Communications in Mathematical Physics, 116, 353-364. http://dx.doi.org/10.1007/BF01229199
[13]  Zee, A. (2003) Quantum Field Theory in a Nutshell. Princeton University Press, Princeton, 279-280.
[14]  Beckwith, A.W. (2006) An Open Question: Are Topological Arguments Helpful In Setting Initial Conditions For Transport Problems in Condensed Matter Physics. Modern Physics Letters B, 20, 233-243.
http://dx.doi.org/10.1142/s0217984906010585
[15]  Hooft, G. (2002) Determinism beneath Quantum Mechanics.
http://arxiv.org/PS_cache/quant-ph/pdf/0212/0212095v1.pdf
[16]  Rothman, T. and Boughn, S. (2006) Can Gravitons Be Detected? Foundations of Physics, 36, 1801-1825.
http://arxiv.org/abs/gr-qc/0601043
[17]  Dyson, F. (2012) Is a Graviton Detectable?
http://publications.ias.edu/sites/default/files/poincare2012.pdf
[18]  Ashtekar, A., Pawlowski, T. and Singh, P. (2006) Quantum Nature of the Big Bang. Physical Review Letters, 96, 141301. http://dx.doi.org/10.1103/PhysRevLett.96.141301
[19]  Ashtekar, A., Pawlowski, T. and Singh, P. (2006) Quantum Nature of the Big Bang: An Analytical and Numerical Investigation. Physical Review D, 73, 124038. http://arxiv.org/abs/gr-qc/0604013
[20]  Carroll, S.M. and Chen, J. (2005) Does Inflation Provide Natural Initial Conditions for the Universe? International Journal of Modern Physics D, 14, 2335-2340. http://arxiv.org/abs/gr-qc/0505037
[21]  Carroll, S.M. and Chen, J. (2004) Spontaneous Inflation and the Origin of the Arrow of Time.
http://arxiv.org/abs/hep-th/0410270
[22]  Gurzadyan, G. and Xue, S.-S. (2003) On the Estimation of the Current Value of the Cosmological Constant. Modern Physics Letters A, 18, 561-568.
[23]  Dowker, F. (2005) Causal Sets and the Deep Structure of Space-Time.
http://arxiv.org/abs/gr-qc/0508109
[24]  Abbott, B.P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, 061102.
https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.116.061102
[25]  Corda, C. (2008) Massive Gravitational Waves from the R2 Theory of Gravity: Production and Response of Interferometers. International Journal of Modern Physics A, 23, 1521-1535.
http://dx.doi.org/10.1142/S0218271809015904
[26]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282.
http://arxiv.org/abs/0905.2502
http://dx.doi.org/10.1142/S0218271809015904
[27]  Beckwith, A. (2016) Gedanken Experiment for Fluctuation of Mass of a Graviton, Based on the Trace of GR Stress Energy Tensor-Pre Planckian Conditions that Lead to Gaining of Graviton Mass, and Planckian Conditions That Lead to Graviton Mass Shrinking to 10 -62 Grams. Journal of High Energy Physics, Gravitation and Cosmology, 2, 19-24. http://dx.doi.org/10.4236/jhepgc.2016.21002
[28]  Beckwith, A. (2016) Does a Randall-Sundrum Brane World Effective Potential Influence Axion Walls Helping to Form a Cosmological Constant Affecting Inflation? Journal of High Energy Physics, Gravitation and Cosmology, 2, 125-153. http://dx.doi.org/10.4236/jhepgc.2016.21013
[29]  Padmanabhan, T. (2005) 100 Years of Relativity, Space-Time Structure: Einstein and Beyond. World Scientific Publishing Co. Pte. Ltd., Singapore, 175-201.
[30]  Puthoff, H. (2009) Private Communications at the Institute of Advanced Study, in 2009, in Austin, Texas in a Visit to the Center, as a Guest of Dr. Eric Davis.
[31]  Dodelson, S. (2003) Modern Cosmology. Academic Press, Cambridge.
[32]  Chen, P. (1995) Resonant Photon-Graviton Conversion and Cosmic Microwave Background Fluctuations. Physical Review Letters, 74, 634-637. http://dx.doi.org/10.1103/PhysRevLett.74.634

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133