Antibacterial activity of iron oxide nanoparticles, an
employing B. aegyptiaca oil (L.) Del., was used as natural stabilizer
by modifying a co-precipitation method. In this work, we chose B. aegyptiacaoil as the new surfactant coating
agent, and synthesized B. aegyptiaca oil coating with iron oxide nanoparticles which were characterized with a variety of methods, including Gas Chromatography
(GC) to determine the fatty acids composition of the seeds oil, Fourier Transform-Infrared Spectroscopy (FTIR), Transmission Electron
Microscopy (TEM) equipped with Energy Dispersive Spectroscopy (EDS), X-ray Powder
Diffractometer (XRD) and Vibrating Sample Magnetometer (VSM). In antibacterial studies,
disk diffusion susceptibility test was used to measure efficacy of iron oxide nanoparticles
against Gram-positive bacteria Staphylococcus aureus (S. aureus), Bacillus subtilis(B. subtilis) and Gram-negative bacteria Escherichia
coli (E. coli) in terms of zone inhibition. The B. aegyptiaca coated on the surface of iron oxide nanoparticles; its particle size was found to
be nanoscale below 50 nm, and the magnetization (δ
References
[1]
Baimark, Y. (2012) Preparation of Surfactant-Free Linear and Star-Shaped Poly(l-lactide)-b-methoxy Polyethylene Glycol Nanoparticles for Drug Delivery. Journal of Applied Sciences, 12, 263.
http://dx.doi.org/10.3923/jas.2012.263.270
[2]
Sahoo, S.K. and Labhasetwar, V. (2003) Nanotech Approaches to Drug Delivery and Imaging. Drug Discovery Today, 8, 1112-1120. http://dx.doi.org/10.1016/S1359-6446(03)02903-9
[3]
Ghavamzadeh, R., Haddadi-Asl, V. and Mirzadeh, H. (2004) Bioadhesion and Biocompatibility Evaluations of Gelatinand Polyacrylic Acid as a Crosslinked Hydrogel in Vitro. Journal of Biomaterials Science, Polymer Edition, 15, 1019-1031. http://dx.doi.org/10.1163/1568562041526478
[4]
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. and Muller, R.N. (2008) Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 108, 2064-2110. http://dx.doi.org/10.1021/cr068445e
[5]
Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W., Zhang, S. and Yang, X. (2007) Preparation and Antibacterial Activity of Fe3O4@ Ag Nanoparticles. Nanotechnology, 18, 285604. http://dx.doi.org/10.1088/0957-4484/18/28/285604
Gupta, A.K. and Curtis, A.S. (2004) Lactoferrin and Ceruloplasmin Derivatized Superparamagnetic Iron Oxide Nanoparticles for Targeting Cell Surface Receptors. Biomaterials, 25, 3029-3040.
http://dx.doi.org/10.1016/j.biomaterials.2003.09.095
[8]
Maydell, H.J. (1986) Trees and Shrubs of the Sahel Their Characteristics and Uses. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ), Germany.
[9]
Ya’u, J., Abdulmalik, U.N., Yaro, A.H., Chindo, B.A., Anuka, J.A. and Hussaini, I.M. (2011) Behavioral Properties of Balanites aegyptiaca in Rodents. Journal of Ethnopharmacology, 135, 725-729.
http://dx.doi.org/10.1016/j.jep.2011.04.003
[10]
Duke, J.A. and Duke, P.A.K. (1983) Medicinal Plants of the Bible. Trado-Medic Books.
[11]
Awad, M.A., El Dib, R.A., Almusayeib, N., Al-Massarani, S., Ortashi, K.M. and Hendi, A.A. (2013) Novel Balanites aegyptiaca Mesocarp Synthesized Silver Nanoparticles: Formation, Characterization, Antimicrobial, Cytotoxicity and Antiviral Effects. Digest Journal of Nanomaterials & Biostructures (DJNB), 8, 4.
[12]
Al Ashaal, H.A., Farghaly, A.A., El Aziz, M.A. and Ali, M.A. (2010) Phytochemical Investigation and Medicinal Evaluation of Fixed Oil of Balanites aegyptiaca Fruits (Balantiaceae). Journal of Ethnopharmacology, 127, 495-501.
http://dx.doi.org/10.1016/j.jep.2009.10.007
[13]
Shimoiizaka, J., Nakatsuka, K., Fujita, T. and Kounosu, A. (1980) Sink-Float Separators Using Permanent Magnets and Water Based Magnetic Fluid. IEEE Transactions on Magnetics, 16, 368-371.
http://dx.doi.org/10.1109/TMAG.1980.1060588
[14]
Khalafalla, S.E. and Reimers, G.W. (1980) Preparation of Dilution-Stable Aqueous Magnetic Fluids. IEEE Transactions on Magnetics, 16, 178-183. http://dx.doi.org/10.1109/TMAG.1980.1060578
[15]
Wooding, A., Kilner, M. and Lambrick, D.B. (1991) Studies of the Double Surfactant Layer Stabilization of Water-Based Magnetic Fluids. Journal of Colloid and Interface Science, 144, 236-242.
http://dx.doi.org/10.1016/0021-9797(91)90254-6
[16]
Harborne, J.B. (1984) Phytochemical Methods. 2nd Edition, Chapman and Hall, New York.
http://dx.doi.org/10.1007/978-94-009-5570-7
[17]
Christie, W.W. (1972) The Preparation of Alkyl Esters from Fatty Acids and Lipids. In: Gunstone, F.D. and Elek, P., Eds., Topics in Lipid Chemistry, Vol. 3, Scientific Books Ltd., London, 171-197.
[18]
Christie, W.W. (1989) Gas Chromatography and Lipids. Vol. 39, Oily Press, Ayr.
[19]
Case, C.L. and Johnson, T.R. (1984) Laboratory Experiments in Microbiology. Benjamin/Cummings Publishing Company, California, USA.
[20]
Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P. and Mukherji, S. (2008) Strain Specificity in Antimicrobial Activity of Silver and Copper Nanoparticles. Acta Biomaterialia, 4, 707-716. http://dx.doi.org/10.1016/j.actbio.2007.11.006
[21]
Alves, S.P., Marcelino, C., Portugal, P.V. and Bessa, R.J.B. (2006) Short Communication: The Nature of Heptadecenoic Acid in Ruminant Fats. Journal of Dairy Science, 89, 170-173.
http://dx.doi.org/10.3168/jds.S0022-0302(06)72081-1
[22]
Shorland, F.B. and Jessop, A.S. (1955) Isolation of Δ9 Heptadecenoic Acid from Lamb Caul Fat 737-737. Nature, 176, 737. http://dx.doi.org/10.1038/176737a0
[23]
Vlaeminck, B., Dufour, C., Van Vuuren, A.M., Cabrita, A.R.J., Dewhurst, R.J., Demeyer, D. and Fievez, V. (2005) Use of Odd and Branched-Chain Fatty Acids in Rumen Contents and Milk as a Potential Microbial Marker. Journal of Dairy Science, 88, 1031-1042. http://dx.doi.org/10.3168/jds.S0022-0302(05)72771-5
[24]
Shan, G., Xing, J., Zhang, H. and Liu, H. (2005) Biodesulfurization of Dibenzothiophene by Microbial Cells Coated with Magnetite Nanoparticles. Applied and Environmental Microbiology, 71, 4497-4502.
http://dx.doi.org/10.1128/AEM.71.8.4497-4502.2005
[25]
Mosivand, S., Monzon, L.M.A., Ackland, K., Kazeminezhad, I. and Coey, J.M.D. (2013) Structural and Magnetic Properties of Sonoelectrocrystallized Magnetite Nanoparticles. Journal of Physics D: Applied Physics, 47, 055001.
http://dx.doi.org/10.1088/0022-3727/47/5/055001
[26]
Seidenfaden, R., Krauter, A., Schertzinger, F., Gerardy-Schahn, R. and Hildebrandt, H. (2003) Polysialic Acid Directs Tumor Cell Growth by Controlling Heterophilic Neural Cell Adhesion Molecule Interactions. Molecular and Cellular Biology, 23, 5908-5918. http://dx.doi.org/10.1128/MCB.23.16.5908-5918.2003
[27]
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons Ltd., New York.
[28]
Tao, Y.T. (1993) Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the Surfaces of Silver, Copper, and Aluminum. Journal of the American Chemical Society, 115, 4350-4358.
http://dx.doi.org/10.1021/ja00063a062
[29]
Zhao, S.Y., Lee, D.G., Kim, C.W., Cha, H.G., Kim, Y.H. and Kang, Y.S. (2006) Synthesis of Magnetic Nanoparticles of Fe3O4 and CoFe2O4 and Their Surface Modification by Surfactant Adsorption. Bulletin of the Korean Chemical Society, 27, 237-242. http://dx.doi.org/10.5012/bkcs.2006.27.2.237
[30]
Zhang, W., Shi, X., Huang, J., Zhang, Y., Wu, Z. and Xian, Y. (2012) Bacitracin-Conjugated Superparamagnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Antibacterial Activity. Chemphyschem, 13, 3388-3396.
http://dx.doi.org/10.1002/cphc.201200161
[31]
Li, D., Jiang, D., Chen, M., Xie, J., Wu, Y., Dang, S. and Zhang, J. (2010) An Easy Fabrication of Monodisperse Oleic Acid-Coated F3O4 Nanoparticles. Materials Letters, 64, 2462-2464. http://dx.doi.org/10.1016/j.matlet.2010.08.025
[32]
Grayer, R.J. and Harborne, J.B. (1994) A Survey of Antifungal Compounds from Higher Plants, 1982-1993. Phytochemistry, 37, 19-42. http://dx.doi.org/10.1016/0031-9422(94)85005-4