Adrenocorticotropin
hormone (ACTH), which is secreted in response to psychological stress, plays an
important role in the hair cycle. This study examined the mechanism by which
ACTH affects the hair cycle using mice deficient in melanocortin
receptor-2(MC2R-/-), which is a main receptor for ACTH. We observed
the hair cycle using female MC2R-/- mice at 15 weeks old and five
days old to determine whether there were any age-dependent differences. The
15-week-old MC2R-/- mice showed the anagen phase for all mice. On
the other hand, all of the MC2R+/+ mice showed the telogen phase at
the same age. Moreover, in the five-day-old mice, the hair growth of the MC2R-/- mice occurred earlier than in the MC2R+/+ mice. Both the 15-week-old
and five-day-old MC2R-/- mice had higher levels of ACTH and alpha-melanocyte
stimulating hormone in the blood than did the MC2R+/+ mice. In
addition, in the 15-week-old MC2R-/- mice, the hair cycle shifted to
the telogen phase following the administration of a cyclic guanosine
monophosphate (cGMP) inhibitor and MC1R/MC5R inhibitor. In the five-day-old
MC2R-/- mice, the hair growth was slowed by the administration of
corticosterone. These results suggest that the ACTH/MC2R system has an important
role in the hair cycle.
References
[1]
Aguilera, G. (1994) Regulation of Pituitary ACTH Secretion during Chronic Stress. Frontiersin Neuroendocrinology, 15, 321-350. http://dx.doi.org/10.1006/frne.1994.1013
[2]
Slominski, A.T., Zmijewski, M.A., Zbytek, B., Tobin, D.J., Theoharides, T.C. and Rivier, J. (2013) Key Role of CRF in the Skin Stress Response System. Endocrine Reviews, 34, 827-884. http://dx.doi.org/10.1210/er.2012-1092
[3]
Dallman, M.F. (1984) Control of Adrenocortical Growth in Vivo. Endocrine Research, 10, 213-242. http://dx.doi.org/10.1080/07435808409036499
[4]
Dhabhar, F.S. and McEwen, B.S. (1999) Enhancing versus Suppressive Effects of Stress Hormone on Skin Immune Function. Proceedings of the National Academy of Sciences of the United States of America, 96, 1059-1064. http://dx.doi.org/10.1073/pnas.96.3.1059
[5]
Arck, P.C., Handjiski, B., Peters, E.M., Prter, A.S., Hagen, E., Fischer, A., Klapp, B.F. and Paus, R. (2003) Stress Inhibits Hair Growth in Mice by Induction of Premature Catagen Development and Deleterious Perifollicular Inflammatory Events via Neuropeptide Substance P-Dependent Pathway. American Journal of Pathology, 162, 803-814. http://dx.doi.org/10.1016/S0002-9440(10)63877-1
[6]
Peters, E.M., Arck, P.C. and Paus, R. (2006) Hair Growth Inhibition by Psychoemotional Stress: Mouse Model for Neural Mechanisms in Hair Growth Control. Experimental Dermatology, 15, 1-13. http://dx.doi.org/10.1111/j.0906-6705.2005.00372.x
[7]
Arck, P.C., Handjiski, B., Hagen, E., Joachim, R., Klapp, B.F. and Paus, R. (2001) Inductions for a “Brain-Hair Follicle Axis (BHA)”: Inhibition of Keratinocyte Proliferation and Up-Regulation of Kelatinocyte Apoptosis in Telogen hair Follicles by Stress and Substance P. FASEB Journal, 15, 2536-2538.
[8]
Kimura-Ueki, M., Oda, Y., Oki, J., Komi-Kuramochi, A., Honda, E. and Asada, M. (2012) Hair Cycle resting phase is regulated by cycle epithelial FGF18 signaling. Journal of Investigative Dermatology, 132, 1338-1345. http://dx.doi.org/10.1038/jid.2011.490
[9]
Foitzik, K., Lindner, G., Mueller-Roever, S., Maurer, M., Botchkareva, N., Botchkarev, V., Handjiski, B., Metz, M., Hibino, T., Soma, T., Dotto, G. P. and Paus, R. (2000) Control of Murine Hair Follicle Regression (Catagen) by TGF- beta1 in Vivo. FASEB Journal, 14, 752-760.
[10]
Naito, A., Sato, T., Matsumoto, T., Takeyama, K., Yoshino, T., Kato, S. and Ohdera, M. (2008) Dihydrotestosterone Inhibits Murine Hair Growth via the Androgen Receptor. British Journal Dermatology, 59, 300-305. http://dx.doi.org/10.1111/j.1365-2133.2008.08671.x
[11]
Tomita, Y., Akiyama, M. and Shimizu, H. (2006) PDGF Isoforms Induce and Maintain Anagen Phase of Murine Hair Follicles. Journal of Dermatological Science, 43, 105-115. http://dx.doi.org/10.1016/j.jdermsci.2006.03.012
[12]
Hayashi, Y., Yamamoto, N., Nakagawa, T. and Ito, J. (2013) Insulin-Like Growth Factor 1 Inhibits Hair Cell Apoptosis and Promotes the Cell Cycle of Supporting Cells by Activating Different Downstream Cascades after Pharmacological Hair Cell Injury in Neonatal Mice. Molecular and Cellular Neuroscience, 56, 29-38. http://dx.doi.org/10.1016/j.mcn.2013.03.003
[13]
Katayama, M., Aoki, E., Suzuki, H. and Kawana, S. (2007) Foot Shock Stress Prolongs the Telogen Stage of the Spontaneous Hair Cycle in a Non-Depilated Mouse Model. Experimental Dermatology, 16, 553-560. http://dx.doi.org/10.1111/j.1600-0625.2007.00558.x
[14]
Aoki, E., Shibasaki, T. and Kawana, S. (2003) Intermittent Foot Shock Stress Prolongs the Telogen Stage in the Hair Cycle of Mice. Experimental Dermatology, 12, 371-377. http://dx.doi.org/10.1034/j.1600-0625.2002.120403.x
[15]
Liu, N., Wang, L.H., Guo, L.L., Wang, G.Q., Zhou, X.P., Jiang, Y., Shang, J., Murao, K., Chen, J.W., Fu, W.Q. and Zhang, G.X. (2013) Chronic Restraint Stress Inhibits Hair Growth via Substance P Mediated by Reactive Oxygen Species in Mice. PLoS One, 8, e61574. http://dx.doi.org/10.1371/journal.pone.0061574
[16]
Roloff, B., Fechner, K., Slominski, A., Furkert, J., Botchkarev, V.A., Bulfone-Paus, S., Zipper, J., Krause, E. and Paus, R. (1998) Hair Cycle-Dependent Expression of Corticotropin-Releasing Factor (CRF) and CRF Receptors (TCRF-R) in Murine Skin. FASEB Journal, 12, 287-297.
[17]
Chida, D., Nakagawa, S., Nagai, S., Sagara, H., Katsumata, H., Imaki, T., Suzuki, H., Mitani, F., Ogishima, T., Shimizu, C., Kotaki, H., Kakuta, S., Sudo, K., Koike, T., Kubo, M. and Iwakura, Y. (2007) Melanocortin 2 Receptor Is Required for Adrenal Gland Development, Steroidogenesis, and Neonatal Gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 18205-18210. http://dx.doi.org/10.1073/pnas.0706953104
[18]
Fleisch, J.H., Haisch, K.D., Spaethe, S.M., Rinkema, L.E., Cullinan, G.J., Schmidt, M.J. and Marshall, W.S. (1984) Pharmacologic Analysis of Two Novel Inhibitors of Leukotriene (Slow Reacting Substance) Release. Journal of Pharmacology and Experimental Therapeutics, 229, 681-689.
[19]
Linke, A., Goren, I., Bosl, M.R., Pfeilschifter, J. and Frank, S. (2010) Epithelial over Expression of SOCS-3 in Transgenic Mice Exacerbates Wound Inflammation in the Presence of Elevated TGF-β1. Journal of Investigative Dermatology, 130, 866-875. http://dx.doi.org/10.1038/jid.2009.345
[20]
Hiramoto, K., Kobayashi, H., Ishii, M., Sato, E. and Inoue, M. (2010) Increased Alpha-Melanocyte-Stimulating Hormone (α-MSH) Levels and Melanocortin Receptors Expression Associated with Pigmentation in an NC/Nga Mouse Model of Atopic Dermatitis. Experimental Dermatology, 19, 132-136. http://dx.doi.org/10.1111/j.1600-0625.2009.00988.x
[21]
Herrmann, M., Henneicke, H., Street, J., Modzelewski, J., Kalak, R., Buttgereit, F., Dunstan, C.R., Zhou, H. and Seibel, M.J. (2009) The Challenge of Continuous Exogenous Glucocorticoid Administration in Mice. Steroids, 74, 245-249. http://dx.doi.org/10.1016/j.steroids.2008.11.009
[22]
Muller-Rover, S., Handjiski, B., van der Veen, C., Eichmuller, S., Foitzik, K., McKay, I.A., Stenn, K.S. and Paus, R. (2001) A Comprehensive Guide for the Accurate Classification of Murine Hair Follicles in Distinct Hair Cycle Stages. Journal of Investigative Dermatology, 117, 3-15. http://dx.doi.org/10.1046/j.0022-202x.2001.01377.x
[23]
Ito, T., Ito, N., Saathoff, M., Bettermann, A., Takigawa, M. and Paus, R. (2005) Interferon-Gamma Is a Potent Inducer of Catagen-Like Changes in Cultured Human Anagen Hair Follicles. British Journal of Dermatology, 152, 623-631. http://dx.doi.org/10.1111/j.1365-2133.2005.06453.x
[24]
Paus, R., Maurer, M., Slominski, A. and Czarnetzki, B.M. (1994) Mast Cell Involvement in Murine Hair Growth. Developmental Biology, 163, 230-240. http://dx.doi.org/10.1006/dbio.1994.1139
[25]
Slominski, A., Botchkareva, N.V., Botchkarev, V.A., Chakraborty, A., Luger, T., Uenalan, M. and Paus, R. (1998) Hair Cycle-Dependent Production of ACTH in Mouse Skin. Biochimica et Biophysica Acta, 1448, 147-152. http://dx.doi.org/10.1016/S0167-4889(98)00124-4
[26]
Slominski, A., Paus, R. and Mazurkiewicz, J. (1992) Proopiomelanocortin expre ssion in the Skin during Induced Hair Growth in Mice. Experientia, 48, 50-54. http://dx.doi.org/10.1007/BF01923606
[27]
Slominski, A., Wortsman, J., Luger, T., Paus, R. and Solomon, S. (2000) Corticotropin Releasing Hormone and Proopiomelanocortin Involvement in the Cutaneous Response to Stress. Physiological Reviews, 80, 979-1020.
[28]
Ermak, G. and Slominski, A. (1997) Production of POMC, CRH-R1, MC1, and MC2 Receptor mRNA and Expression of Tyrosinase Gene in Relation to Hair Cycle and Dexamethasone Treatment in the C57BL/6 Mouse Skin. Journal of Investigative Dermatology, 108, 160-165. http://dx.doi.org/10.1111/1523-1747.ep12332925
[29]
Stankovic, A.K., Grizzie, W.E., Stockard, C.R. and Parker Jr., C.R. (1994) Interactions between TGF-Beta and Adrenocorticotropic in Growth Regulation of Human Adrenal Fetal Zone Cells. American Journal of Physiology, 266, E495-E500.
[30]
Lezcano, N.E. and Celis, M.E. (1996) Effects of Alpha-MSH and Cholinergic Agents on cGMP and IP3 Levels in Rat Brain Slices. Acta Physiologica, Pharmacologica et Therapeutica Latinoamericana, 46, 193-201.
[31]
Al-Nuaimi, Y., Hardman, J.A., Biro, T., Haslam, I.S., Philpott, M.P., Toth, B.I., Farjo, N., Farjo, B., Baier, G., Watson, R.E., Grimaldi, B., Kloepper, J.E. and Paus, R. (2014) A Meeting of Two Chronobiological Systems: Circadian Proteins Period1 and BMAL1 Modulate the Human Hair Cycle Clock. Journal of Investigative Dermatology, 134, 610-619. http://dx.doi.org/10.1038/jid.2013.366
[32]
Christ, E., Pfeffer, M., Korf, H.W. and Van Gall, C. (2010) Pineal Melatonin Synthesis Is Altered in Period1 Deficient Mice. Neuroscience, 171, 398-406. http://dx.doi.org/10.1016/j.neuroscience.2010.09.009
[33]
Dinet, V. and Korf, H.W. (2007) Impact of Melatonin Receptors on pCREB and Clock-Gene Protein Levels in the Musine Retina. Cell and Tissue Research, 330, 29-34. http://dx.doi.org/10.1007/s00441-007-0468-5
[34]
Yasuo, S., Von Gall, C., Weaver, D.R. and Korf, H.W. (2008) Rhythmic Expression of Clock Genes in the Ependymal Cell Layer of the Third Ventricle of Rodents Is Independent of MELATONIN signaling. European Journal of Neuroscience, 28, 2443-2450. http://dx.doi.org/10.1111/j.1460-9568.2008.06541.x
[35]
Slominski, A., Wortsman, J. and Tobin, D.J. (2005) The Cutaneous Serotoninergic/Melatoninergic System: Securing a Place Under the Sun. FASEB Journal, 19, 176-194. http://dx.doi.org/10.1096/fj.04-2079rev
[36]
Maurer, M., Fischer, E., Handjiski, B., von Stebut, E., Algermissen, B., Bavandi, A. and Paus, R. (1997) Activated Skin Mast Cells Are Involved in Murine Hair Follicle Regression (Catagen). Laboratory Investigation, 77, 319-332.
[37]
Diaz, B., Barreto, E., Cordeiro, R., Perretti, M., Martins, M. and Silva, P. (2001) Enhanced Serum Glucocorticoid Levels Mediate the Reduction of Serosal Mast Cell Numbers in Diabetic Rats. Life Sciences, 8, 2925-2932. http://dx.doi.org/10.1016/S0024-3205(01)01087-6
[38]
Hashimoto, K., Makino, S., Asaba, K. and Nishiyama, M. (2001) Physiological Roles of Corticotropin-Releasing Hormone Receptor Type 2. Endocrine Journal, 48, 1-9. http://dx.doi.org/10.1507/endocrj.48.1
[39]
Paus, R., Langan, E.A., Vidali, S., Ramot, Y. and Andersen, B. (2014) Neuroendocrinology of the Hair Follicle: Principles and Clinical Perspectives. Trends in Molecular Medicine, 20, 559-570. http://dx.doi.org/10.1016/j.molmed.2014.06.002