Simple HPLC-Fluorescence Determination of Raspberry Ketone in Fragrance Mist after Pre-Column Derivatization with 4-Hydrazino-7-nitro-2,1,3-benzoxadiazole
Raspberry ketone {RK, 4-(4-hydroxyphenyl)butan-2-one} is a natural compound contained in raspberry, and is added to cosmetics for skin whitening. It is very important to measure the RK level in cosmetics for quality assessment, since RK structurally resembles 4-(4-hydroxyphenyl)-2-butanol, which causes leukoderma on consumers’ skin. Here, we present a simple HPLC-fluorescence method for determination of RK in a fragrance mist by pre-column derivatization with 4-hydrazino-7-nitro-2,1,3-benzoxadiazole hydrazine (NBD-H), which reacts with the carbonyl group of RK. The NBD-RK derivative was eluted from a reversed-phase ODS column, and detected with excitation at 470 nm and emission at 550 nm. The retention time of NBD-RK derivative obtained by reaction with NBD-H at 80°C for 20 min was 10.3 min. The standard curve was linear in the range of 0.2 to 10 μg/mL, with a correlation coefficient (r2) value of 0.9980. The lower limit of detection was 0.018 μg/mL (absolute amount of 1.8 pmol). The coefficients of variation were less than 8.1%. The content of RK in fragrance mist (1.00 mL) was 1.18 ± 0.07 mg (range: 1.12 to 1.28 mg, n = 5). Recovery tests were satisfactory (83.9% ± 3.9%; range: 79.6 to 88.8%, n = 5).
References
[1]
Morimoto, C., Satoh, Y, Hara, M., Inoue, S., Tsujita, T. and Okuda, H. (2005) Anti-Obese Action of Raspberry Ketone. Life Sciences, 77, 194-204. http://dx.doi.org/10.1016/j.lfs.2004.12.029
[2]
Wang, L., Meng, X. and Zhang, F. (2012) Raspberry Ketone Protects Rats Fed High-fat Diets against Nonalcoholic Steatohepatitis. Journal of Medicinal Food, 15, 495-503. http://dx.doi.org/10.1089/jmf.2011.1717
[3]
Park, K.S. (2015) Raspberry Ketone, a Naturally Occurring Phenolic Compound, Inhibits Adipogenic and Lipogenic Gene Expression in 3T3-L1 Adipocytes. Pharmaceutical Biology, 53, 870-875.
http://dx.doi.org/10.3109/13880209.2014.946059
[4]
Fukuda, Y., Nagano, M., Arimatsu, Y. and Futatsuka, M. (1998) An Experimental Study on Depigmenting Activity of 4-(p-Hydroxyphenyl)-2-butanone in C57 Black Mice. Journal of Occupational Health, 40, 97-102.
http://dx.doi.org/10.1539/joh.40.97
[5]
Victor Lin, C.H., Ding, H.Y., Kuo, S.Y., Chin, L.W., Wu, J.Y. and Chang, T.S. (2011) Evaluation of in Vitro and in Vivo Depigmenting Activity of Raspberry Ketone from Rheum officinale. International Journal of Molecular Sciences, 12, 4819-4835. http://dx.doi.org/10.3390/ijms12084819
[6]
Kim, M., Baek, H.S., Lee, M., Park, H., Shin, S.S., Choi, D.W. and Lim, K.M. (2016) Rhododenol and Raspberry Ketone Impair the Normal Proliferation of Melanocytes through Reactive Oxygen Species-Dependent Activation of GADD45. Toxicology in Vitro, 32, 339-346. http://dx.doi.org/10.1016/j.tiv.2016.02.003
[7]
Aoyama, Y., Ito, A., Suzuki, K., Suzuki, T., Tanemura, A., Nishigori, C., Ito, M., Katayama, I., Sugiura, S. and Matsunaga, K. (2014) The First Epidemiological Report of Rhododenol-Induced Leukoderma in Japan Based on a Nationwide Survey. The Japanese Journal of Dermatology, 124, 2095-2109.
[8]
Fogy, I., Grundmann, H., Schmid, E.R., Huber, J.F.K. and Holzer, H. (1981) High-Pressure Liquid Chromatographic Determination of Raspberry Ketone in Natural and Artificially Aromatized Raspberry Products. Deutsche Lebensmittel-Rundschau, 77, 271-275.
[9]
Borejsza-Wysocki, W., Goers, S.K., McArdle, R.N. and Hrazdina, G. (1992) (p-Hydroxyphenyl)butan-2-One Levels in Raspberries Determined by Chromatographic and Organoleptic Methods. Journal of Agricultural and Food Chemistry, 40, 1176-1177. http://dx.doi.org/10.1021/jf00019a018
[10]
Perez, R.L. (1983) Gas Chromatographic Determination of Raspberry Ketone and Malathion in Insect Bait Concentrates. Journal of Chromatography A, 259, 176-180. http://dx.doi.org/10.1016/S0021-9673(01)87993-0
[11]
Grob Jr. K. and Stoll, J.M. (1986) Loop-Type Interface for Concurrent Solvent Evaporation in Coupled HPLC-GC. Analysis of Raspberry Ketone in a Raspberry Sauce as an Example. Journal of High Resolution Chromatography, 9, 518-523. http://dx.doi.org/10.1002/jhrc.1240090906
[12]
Beekwilder J., van der Meer I.M., Sibbesen, O., Broekgaarden, M., Qvist, I., Joern D. Mikkelsen, J.D. and Hall, R.D. (2007) Microbial Production of Natural Raspberry Ketone. Biotechnology Journal, 2, 1270-1279.
http://dx.doi.org/10.1002/biot.200700076
[13]
Lili, W., Yansong, W., Yan, Z., Xianjun, M., Lei, Y. and Fengqing, Z. (2011) Determination of Raspberry Ketone in Raspberry by High-Performance Liquid Chromatography Tandem Mass Spectrometry. 2011 International Conference on Human Health and Biomedical Engineering (HHBE), Jilin, 19-22 August 2011, 62-65.
http://dx.doi.org/10.1109/hhbe.2011.6027897
[14]
Gübitz, G., Wintersteiger, R. and Frei, R.W. (1984) Fluorogenic Labelling of Carbonyl Compounds with 7-Hydrazine-4-nitrobenzo-2-oxa-1,3-diazole (NBD-H). Journal of Liquid Chromatography, 7, 839-854.
http://dx.doi.org/10.1080/01483918408074006
[15]
Uzu, S., Kanda, S., Imai, K., Nakashima, K. and Akiyama S. (1990) Fluorogenic Reagents: 4-Aminosulphonyl-7-hydrazino-2,1,3-benzoxadiazole, 4-(N,N-Dimethylaminosulphonyl)-7-hydrazino-2,1,3-benzoxadiazole and 4-Hydrazino-7-nitro-2,1,3-benzoxadiazole Hydrazine for Aldehydes and Ketones. Analyst, 115, 1477-1482.
http://dx.doi.org/10.1039/an9901501477