全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gedanken Experiment for Delineating the Regime for the Start of Quantum Effects, and Their End, Using Turok’s Perfect Bounce Criteria and Radii of a Bounce Maintaining Quantum Effects, as Delineated by Haggard and Rovelli

DOI: 10.4236/jhepgc.2016.23024, PP. 287-292

Keywords: Quantum Effects, Haggard and Rovelli

Full-Text   Cite this paper   Add to My Lib

Abstract:

Haggard and Rovelli delineated an outer radius as to the range of quantum effects, which extends past the Schwartzshield radius. This is defined as 7/3 times the mass of the initial cosmological system. We also have a range of perturbative effects as delineated by Turok’s article which gives a range of values of \"\" for which second order perturbative terms in cosmological evolution may play a role, where we have second order perturbation terms for which \"\". Right afterwards, there are no perturbative behavior and no perturbation if \"\". This is the 2nd order term for perturbing term for GW (Gravitational wave) as denoted by \"\", and near the “zero point” of cosmological expansion, and from there we determine the size of the quantum effects, i.e. when they initiate, the relevant initial entropy, so as to determine the radii of initial cosmology, so quantum gravity may initiate its activity, in our toy universe. The criteria of Turok is used to obtain the relevant mass, m, used in the initial radii so that it is 7/3 times the mass of the initial cosmological system. We use the “Criteria of Turok” to delineate the start of quantum gravity effects. Mass m is done via appealing to graviton mass, and that times initial entropy, which is commented upon in Equation (9).

References

[1]  Turok, N. (2015) A Perfect Bounce.
http://www.researchgate.net/publication/282580937_A_Perfect_Bounce
[2]  Haggard, H.M. and Rovelli, C. (2015) Black Hole Fireworks: Quantum Gravity Effects outside the Horizon Spark Black to White Hole Tunneling. Physical Review D, 92, 104020.
http://arxiv.org/abs/1407.0989
[3]  Beckwith, A. (2015) Geddankerexperiment for Initial Temperature, Particle Count and Entropy Affected by Initial D.O.F and Fluctuations of Metric Tensor and the Riemannian Penrose Inequality, with Application. http://vixra.org/abs/1509.0273
[4]  Beckwith, A. (2015) Geddankenexperiment for Refining the Unruh Metric Tensor Uncertainty Principle Via Schwart- zshield Geometry and Planckian Space-Time with Initial Non Zero Entropy and Applying the Riemannian-Penrose Inequality and the Initial Kinetic Energy. http://vixra.org/abs/1509.0173
[5]  Unruh, W.G. (1986) Why Study Quantum Theory? Canadian Journal of Physics, 64, 128-130. http://dx.doi.org/10.1139/p86-019 Unruh, W.G. (1986) Erratum: Why Study Quantum Gravity? Canadian Journal of Physics, 64, 128
[6]  Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Press Scientific, Hackensack. http://dx.doi.org/10.1142/6730
[7]  Katti, A. (2013) The Mathematical Theory of Special and General Relativity. CreateSpace Independent Publishing, North Charleston.
[8]  Galloway, G., Miao, P. and Schoen, R. (2015) Initial Data and the Einstein Constraints. In: Ashtekar, A., (Editor in Chief), Berger, B., Isenberg, J. and MacCallum, M., Eds., General Relativity and Gravitation, A Centennial Perspective, Cambridge University Press, Cambridge, 20, 412-448.
[9]  Will, C. (2014) The Confrontation between General Relativity and Experiment.
http://relativity.livingreviews.org/Articles/lrr-2014-4/download/lrr-2014-4Color.pdf
[10]  Downes, T.G. and Milburn, G.J. (2011) Optimal Quantum Estimation for Gravitation. gr-qc arXiv:1108.5220
[11]  Abbott, B.P., et al., LIGO Scientific Collaboration and Virgo Collaboration (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102.
https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.116.061102
[12]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. http://arxiv.org/abs/0905.2502
http://dx.doi.org/10.1142/S0218271809015904

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133