全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fourth-Order Compact Formulation for the Resolution of Heat Transfer in Natural Convection of Water-Cu Nanofluid in a Square Cavity with a Sinusoidal Boundary Thermal Condition

DOI: 10.4236/wjnse.2016.62009, PP. 70-89

Keywords: Nanofluid, Heat Transfer, Natural Convection, Fourth-Order Compact (F.O.C) Formulation, Numerical Performance, Sinusoidal Boundary Thermal Condition

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present work, we numerically study the laminar natural convection of a nanofluid confined in a square cavity. The vertical walls are assumed to be insulated, non-conducting, and impermeable to mass transfer. The horizontal walls are differentially heated, and the low is maintained at hot condition (sinusoidal) when the high one is cold. The objective of this work is to develop a new height accurate method for solving heat transfer equations. The new method is a Fourth Order Compact (F.O.C). This work aims to show the interest of the method and understand the effect of the presence of nanofluids in closed square systems on the natural convection mechanism. The numerical simulations are performed for Prandtl number (\"\" ), the Rayleigh numbers varying between?\"\" and for different volume fractions \"\" varies between 0% and 10% for the nanofluid (water + Cu).

References

[1]  Choi, S. (1995) Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: Siginer, D.A. and Wang, H.P., Eds., De-velopments and Applications of Non-Newtonian Flows, FED-Vol. 231/MD-Vol. 66, ASME, New York, 99-105.
[2]  Khanafer, K., Vafai, K. and Lightstone, M. (2003) Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids. International Journal of Heat and Mass Transfer, 46, 3639-3653.
http://dx.doi.org/10.1016/S0017-9310(03)00156-X
[3]  Lee, S., Choi, S.U.-S., Li, S. and Eastman, J. (1999) Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. Journal of Heat Transfer, 121, 280-289.
http://dx.doi.org/10.1115/1.2825978
[4]  Xie, H., Wang, J., Xi, T. and Liu, Y. (2002) Thermal Conductivity of Suspensions Containing Nanosized SiC Particles. International Journal of Thermophysics, 23, 571-580.
http://dx.doi.org/10.1023/A:1015121805842
[5]  Xie, H., Wang, J., Xi, T., Liu, Y. and Ai, F. (2002) Dependence of the Thermal Conductivity of Nanoparticle-Fluid Mixture on the Base Fluid. Journal of Materials Science Letters, 21, 1469-1471.
http://dx.doi.org/10.1023/A:1020060324472
[6]  Hwang, K.S., Jang, S.P. and Choi, S.U. (2009) Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime. International Journal of Heat and Mass Transfer, 52, 193-199.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.06.032
[7]  Wen, D. and Ding, Y. (2004) Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions. International Journal of Heat and Mass Transfer, 47, 5181-5188.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
[8]  Xuan, Y. and Li, Q. (2003) Investigation on Convective Heat Transfer and Flow Features of Nanofluids. Journal of Heat Transfer, 125, 151-155.
http://dx.doi.org/10.1115/1.1532008
[9]  Xuan, Y. and Li, Q. (2000) Heat Transfer Enhancement of Nanofluids. International Journal of Heat and Fluid Flow, 21, 58-64.
http://dx.doi.org/10.1016/S0142-727X(99)00067-3
[10]  Naramgari, S. and Sulochana, C. (2015) MHD Flow of Dusty Nanofluid over a Stretching Surface with Volume Fraction of Dust Particles. Ain Shams Engineering Journal, 7, 709-716.
http://dx.doi.org/10.1016/j.asej.2015.05.015
[11]  Ben-Cheikh, N., Chamkha, A.J., Ben-Beya, B. and Lili, T. (2013) Natural Convection of Water-Based Nanofluids in a Square Enclosure with Non-Uniform Heating of the Bottom Wall. Journal of Modern Physics, 4, 147-159.
http://dx.doi.org/10.4236/jmp.2013.42021
[12]  Tiwari, R.K. and Das, M.K. (2007) Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids. International Journal of Heat and Mass Transfer, 50, 2002-2018.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.09.034
[13]  Naoufal, Y., Zaydan, M. and Rachid, S. (2015) Numerical Study of Natural Convection in a Square Cavity with Partitions Utilizing Cu-Water Nanofluid. International Journal of Innovative Research in Science, Engineering and Technology, 4, 10354-10367.
[14]  El Bouihi, I. and Sehaqui, R. (2012) Numerical Study of Natural Convection in a Two-Dimensional Enclosure with a Sinusoidal Boundary Thermal Condition Utilizing Nanofluid. Engineering, 4, 445-452.
http://dx.doi.org/10.4236/eng.2012.48058
[15]  Aminossadati, S. and Ghasemi, B. (2009) Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure. European Journal of Mechanics-B/Fluids, 28, 630-640.
http://dx.doi.org/10.1016/j.euromechflu.2009.05.006
[16]  Ögüt, E.B. (2009) Natural Convection of Water-Based Nanofluids in an Inclined Enclosure with a Heat Source. International Journal of Thermal Sciences, 48, 2063-2073.
http://dx.doi.org/10.1016/j.ijthermalsci.2009.03.014
[17]  Yu, W. and Choi, S. (2003) The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model. Journal of Nanoparticle Research, 5, 167-171.
http://dx.doi.org/10.1023/A:1024438603801
[18]  Ghasemi, B. and Aminossadati, S. (2010) Periodic Natural Convection in a Nanofluid-Filled Enclosure with Oscillating Heat Flux. International Journal of Thermal Sciences, 49, 1-9.
http://dx.doi.org/10.1016/j.ijthermalsci.2009.07.020
[19]  Sarris, I., Lekakis, I. and Vlachos, N. (2002) Natural Convection in a 2D Enclosure with Sinusoidal Upper Wall Temperature. Numerical Heat Transfer, Part A: Applications, 42, 513-530.
http://dx.doi.org/10.1080/10407780290059675
[20]  Corcione, M. (2003) Effects of the Thermal Boundary Conditions at the Sidewalls upon Natural Convection in Rectangular Enclosures Heated from Below and Cooled from Above. International Journal of Thermal Sciences, 42, 199-208.
http://dx.doi.org/10.1016/S1290-0729(02)00019-4
[21]  Roy, S. and Basak, T. (2005) Finite Element Analysis of Natural Convection Flows in a Square Cavity with Non-Uniformly Heated Wall(s). International Journal of Engineering Science, 43, 668-680.
http://dx.doi.org/10.1016/j.ijengsci.2005.01.002
[22]  Sathiyamoorthy, M., Basak, T., Roy, S. and Pop, I. (2007) Steady Natural Convection Flows in a Square Cavity with Linearly Heated Side Wall(s). International Journal of Heat and Mass Transfer, 50, 766-775.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.06.019
[23]  Brinkman, H. (1952) The Viscosity of Concentrated Suspensions and Solutions. The Journal of Chemical Physics, 20, 571-571.
http://dx.doi.org/10.1063/1.1700493
[24]  Xuan, Y. and Li, Q. (1999) Report of Nanjing University of Sciences and Technology. (In Chinese)
[25]  Abu-Nada, E. (2008) Application of Nanofluids for Heat Transfer Enhancement of Separated Flows Encountered in a Backward Facing Step. International Journal of Heat and Fluid Flow, 29, 242-249.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.07.001
[26]  Levin, M. and Miller, M. (1981) Maxwell a Treatise on Electricity and Magnetism. Uspekhi Fizicheskikh Nauk, 135, 425-440.
http://dx.doi.org/10.3367/UFNr.0135.198111d.0425
[27]  Störtkuhl, T., Zenger, C. and Zimmer, S. (1994) An Asymptotic Solution for the Singularity at the Angular Point of the Lid Driven Cavity. International Journal of Numerical Methods for Heat & Fluid Flow, 4, 47-59.
http://dx.doi.org/10.1108/EUM0000000004030
[28]  Dennis, S. and Hudson, J. (1989) Compact h4 Finite-Difference Approximations to Operators of Navier-Stokes Type. Journal of Computational Physics, 85, 390-416.
http://dx.doi.org/10.1016/0021-9991(89)90156-3
[29]  MacKinnon, R.J. and Johnson, R.W. (1991) Differential-Equation-Based Representation of Truncation Errors for Accurate Numerical Simulation. International Journal for Numerical Methods in Fluids, 13, 739-757.
http://dx.doi.org/10.1002/fld.1650130606
[30]  Gupta, M.M., Manohar, R.P. and Stephenson, J.W. (1984) A Single Cell High Order Scheme for the Convection-Diffusion Equation with Variable Coefficients. International Journal for Numerical Methods in Fluids, 4, 641-651.
http://dx.doi.org/10.1002/fld.1650040704
[31]  Spotz, W. and Carey, G. (1995) High-Order Compact Scheme for the Steady Stream-Function Vorticity Equations. International Journal for Numerical Methods in Engineering, 38, 3497-3512.
http://dx.doi.org/10.1002/nme.1620382008
[32]  Li, M., Tang, T. and Fornberg, B. (1995) A Compact Fourth-Order Finite Difference Scheme for the Steady Incompressible Navier-Stokes Equations. International Journal for Numerical Methods in Fluids, 20, 1137-1151.
http://dx.doi.org/10.1002/fld.1650201003
[33]  Erturk, E. and Gökçöl, C. (2006) Fourth-Order Compact Formulation of Navier-Stokes Equations and Driven Cavity Flow at High Reynolds Numbers. International Journal for Numerical Methods in Fluids, 50, 421-436.
http://dx.doi.org/10.1002/fld.1061
[34]  de Vahl Davis, G. (1983) Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution. International Journal for Numerical Methods in Fluids, 3, 249-264.
http://dx.doi.org/10.1002/fld.1650030305
[35]  Markatos, N.C. and Pericleous, K. (1984) Laminar and Turbulent Natural Convection in an Enclosed Cavity. International Journal of Heat and Mass Transfer, 27, 755-772.
http://dx.doi.org/10.1016/0017-9310(84)90145-5
[36]  Hadjisophocleous, G., Sousa, A. and Venart, J. (1988) Prediction of Transient Natural Convection in Enclosures of Arbitrary Geometry Using a Nonorthogonal Numerical Model. Numerical Heat Transfer, 13, 373-392.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133