全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp.

DOI: 10.1371/journal.pntd.0004309

Full-Text   Cite this paper   Add to My Lib

Abstract:

Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM). PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90), cytochrome c peroxidase (ccp), the hemoglobin ligand RBT5 (rbt5) and superoxide dismutase (sod). Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy.

References

[1]  Brummer E, Castaneda E, Restrepo A. Paracoccidioidomycosis: an update. Clin Microbiol Rev. 1993; 6: 89–117. pmid:8472249
[2]  Marques SA. Paracoccidioidomycosis: epidemiological, clinical, diagnostic and treatment up-dating. An Bras Dermatol. 2013; 88: 700–711. doi: 10.1590/abd1806-4841.20132463. pmid:24173174
[3]  Prado M, Silva MB, Laurenti R, Travassos LR, Taborda CP. Mortality due to systemic mycoses as a primary cause of death or in association with AIDS in Brazil: a review from 1996 to 2006. Mem Inst Oswaldo Cruz. 2009; 104: 513–521. pmid:19547881 doi: 10.1590/s0074-02762009000300019
[4]  Pfaller M, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007; 20: 133–63. pmid:17223626 doi: 10.1128/cmr.00029-06
[5]  Zhai B, Lin X. Recent progress on antifungal drug development. Current Pharm Biotechnol. 2011; 12: 1255–62. doi: 10.2174/138920111796117292
[6]  Bocca AL, Amaral AC, Teixeira MM, Sato PK, Shikanai-Yasuda MA, et al. Paracoccidioidomycosis: eco-epidemiology, taxonomy and clinical and therapeutic issues. Future Microbiol 2013; 8: 1177–1191. doi: 10.2217/fmb.13.68. pmid:24020744
[7]  Rittner GMG, Mu?oz JE, Marques AF, Nosanchuk JD, Taborda CP, et al. Therapeutic DNA vaccine encoding peptide P10 against experimental paracoccidioidomycosis. PLoS Negl Trop Dis. 2012; 6: e1519. doi: 10.1371/journal.pntd.0001519. pmid:22389734
[8]  Tomazett PK, Castro NS, Lenzi HL, Soares CMA, Pereira M. Response of Paracoccidioides brasiliensis Pb01 to stressor agents and cell wall osmoregulators. Fung Biol. 2011;115: 62–69. doi: 10.1016/j.funbio.2010.10.005
[9]  Tomazett PK, Félix CR, Lenzi LH, Faria FP, Soares CMA, et al. 1,3-β-D-Glucan synthase of Paracoccidioides brasiliensis: recombinant protein, expression and cytolocalization in the yeast and mycelium phases. Fung Biol. 2010; 114: 809–816. doi: 10.1016/j.funbio.2010.07.007
[10]  Neto BRS, Silva JF, Mendes-Giannini MJ, Lenzi HL, Soares CMA, et al. The malate synthase of Paracoccidioides brasiliensis is a linked surface protein that behaves as an anchorless adhesion. BMC Microbiol. 2009; 24: 272–284. doi: 10.1186/1471-2180-9-272
[11]  Zambuzzi-Carvalho PF, Cruz AH, Santos-Silva LK, Goes AM, Soares CMA, et al. The malate synthase of Paracoccidioides brasiliensis Pb01 is required in the glyoxylate cycle and in the allantoin degradation pathway. Med Mycol. 2009; 47: 734–744. doi: 10.3109/13693780802609620. pmid:19888806
[12]  Cruz AH, Brock M, Zambuzzi-Carvalho PF, Santos-Silva LK, Troian RF, et al.) Phosphorylation is the major mechanism regulating isocitrate lyase activity in Paracoccidioides brasiliensis yeast cells. FEBS J. 2011; 278: 2318–2332. doi: 10.1111/j.1742-4658.2011.08150.x. pmid:21535474
[13]  Pereira M, Song Z, Santos-Silva LK, Richards MH, Nguyen TT, et al. Cloning, mechanistic and functional analysis of a fungal sterol C24-methyltransferase implicated in brassicasterol biosynthesis. Biochim Biophys Acta. 2010; 1801:1163–1174. doi: 10.1016/j.bbalip.2010.06.007. pmid:20624480
[14]  do Carmo Silva L, Tamayo Ossa DP, Castro SV, Bringel Pires L, Alves de Oliveira CM, Concei??o da Silva C, Coelho NP, Bail?o AM, Parente- Rocha JA, Soares CM, Ruiz OH, Ochoa JG, Pereira M. Transcriptome Profile of the Response of Paracoccidoides spp. to a Camphene Thiosemicarbazide Derivative. PLos One. 2015; 26:10(6):e0130703. doi: 10.1371/journal.pone.0130703. pmid:26114868
[15]  Zambuzzi-Carvalho PF, Tomazett PK, Santos SC, Ferri PH, Borges CL, Martins WS, de Almeida Soares CM, Pereira M. Transcriptional profile of Paracoccidioides induced by oenothein B, a potential antifungal agente from the Brazilian Cerrado plant Eugenia uniflora. BMC Microbiol. 2013, 13: 227. doi: 10.1186/1471-2180-13-227. pmid:24119145
[16]  Santos GD, Ferri PH, Santos SC, Bao SN, Soares CM, Pereira M. Oenothein B inhibits the expression of PbFKS1 transcript and induces morphological changes in Paracoccidoides brasiliensis. Med Mycol. 2001; 45: 609–618. doi: 10.1080/13693780701502108
[17]  McNeil M, Facey P, Porter R. Essential oils from the Hyptis genus—a review (1909–2009). Nat Prod Commun. 2011; 6: 1775–96. pmid:22224308
[18]  Oliveira CMA, Silva MRR, Kato L, Silva CC, Ferreira HD, et al.) Chemical composition and antifungal activity of the essential oil of Hyptis ovalifolia Benth. (Lamiaceae). J Braz Chem Soc. 2004; 5:756–759. doi: 10.1590/s0103-50532004000500023
[19]  Prado RS, Alves RJ, Oliveira CM, Kato L, Silva RA, et al. (2014) Inhibition of Paracoccidioides lutzii Pb01 Isocitrate Lyase by the Natural Compound Argentilactone and Its Semi-Synthetic Derivatives. PLoS One. 2014; 9: e94832. doi: 10.1371/journal.pone.0094832. pmid:24752170
[20]  Fava-Netto C. Estudos quantitativos sobre a fixa??o de complemento na blastomicose sul-americana, com antigeno polissacarídico. Arq Cir Clin Exp. 1955; 18: 197–254. pmid:13363721
[21]  Restrepo A, Jimenez BE. Growth of Paracoccidioides brasiliensis yeast phase in a chemically defined culture medium. J Clin Microbiol. 1980; 12: 279–281. pmid:7229010
[22]  Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2001; Appendix 3:Appendix 3B. doi: 10.1002/0471142735.ima03bs21.
[23]  Lima Pde S, Casaletti L, Bail?o AM, de Vasconcelos AT, Fernandes Gda R, et al.Transcriptional and proteomic responses to carbon starvation in Paracoccidioides. PLoS Negl Trop Dis. 2014; 8:e2855. doi: 10.1371/journal.pntd.0002855. pmid:24811072
[24]  Tamayo D, Mu?oz JF, Torres I, Almeida AJ, Restrepo A, et al. Involvement of the 90 kDa heat shock protein during adaptation of Paracoccidioides brasiliensis to different environmental conditions. Fungal Genet Biol. 2013; 51: 34–41. doi: 10.1016/j.fgb.2012.11.005. pmid:23207691
[25]  Parente AF, Naves PE, Pigosso LL, Casaletti L, McEwen JG, Parente-Rocha JA, Soares CM. The response of Paracoccidioides spp. to nitrosative stress. Microbes Infect. 2015;17:575–585. doi: 10.1016/j.micinf.2015.03.012. pmid:25841799
[26]  Bail?o EF, Parente JA, Pigosso LL, Castro KP, Fonseca FL, et al. Hemoglobin Uptake by Paracoccidioides spp. Is Receptor-Mediated. PLoS Negl Trop Dis. 2015; 8: e2856. doi: 10.1371/journal.pntd.0002856
[27]  Bradford MMA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 7: 248–254. doi: 10.1016/0003-2697(76)90527-3
[28]  Zambuzzi-Carvalho PF, Tomazett PK, Santos SC, Ferri PH, Borges CL, et al. Transcriptional profile of Paracoccidioides induced by oenothein B, a potential antifungal agent from the Brazilian Cerrado plant Eugenia uniflora. BMC Microbiol. 2013; 13: 227. doi: 10.1186/1471-2180-13-227. pmid:24119145
[29]  Scaraffia PY, Tan G, Isoe J, Wysocki VH, Wells MA, et al. Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes. Proc Natl Acad Sci USA. 2008; 105: 518–23. doi: 10.1073/pnas.0708098105. pmid:18182492
[30]  Felipe MS, Andrade RV, Arraes FB, Nicola AM, Maranh?o AQ, et al. Transcriptional Profiles of the Human Pathogenic Fungus Paracoccidioides brasiliensis in Mycelium and Yeast Cells. J Biol Chem. 2005; 280: 24706–24714. pmid:15849188 doi: 10.1074/jbc.m500625200
[31]  Br?mer CO, Silva LF, Gomez JG, Priefert H, Steinbüchel A. Identification of the 2-methylcitrate pathway involved in the catabolism of propionate in the polyhydroxyalkanoate-producing strain Burkholderia sacchari IPT101(T) and analysis of a mutant accumulating a copolyester with higher 3-hydroxyvalerate content. Appl Environ Microbiol. 2002; 68: 271–279. pmid:11772636 doi: 10.1128/aem.68.1.271-279.2002
[32]  Carbonell LM, Kanetsuna F, Gil F. Chemical morphology of glucan and chitin in the cell wall of the yeast phase of Paracoccidioides brasiliensis. J Bacteriol. 1970; 101: 636–42. pmid:5413832
[33]  Kanetsuna F, Carbonell LM, Azuma I, Yamamura Y. Biochemical studies on the thermal dimorphism of Paracoccidioides brasiliensis. J Bacteriol. 1972; 110: 208–18. pmid:5018021
[34]  Wood PJ. Specificty in the interaction of direct dyes with polysaccharides. Carbohydr Res. 1980; 81:271–287.
[35]  Roncero C, Durán A. Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol. 1985; 163: 1180–5. pmid:3897187
[36]  Herth W (1980) Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: evidence for a gap between polymerization and microfibril formation. J Cell Biol. 1980; 87: 442–450. pmid:7430250 doi: 10.1083/jcb.87.2.442
[37]  Georgiadou SP, Kontoyiannis DP. The impact of azole resistance on aspergillosis guidelines. Ann NY Acad Sci. 2012; 12721: 5–22 doi: 10.1111/j.1749-6632.2012.06795.x
[38]  Hoehamer CF, Cummings ED, Hilliard GM, Rogers PD.Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob Agents Chemother. 2010; 54: 1655–1664. doi: 10.1128/AAC.00756-09. pmid:20145080
[39]  Neto BRS, Zambuzzi-Carvalho PF, Bail?o AM, Martins WS, Soares CMA, et al. Transcriptional profile of Paracoccidioides spp. in response to itraconazole. BMC Genom. 2014; 15: 254. doi: 10.1186/1471-2164-15-254
[40]  Isoe J, Scaraffia PY. Urea Synthesis and Excretion in Aedes aegypti Mosquitoes Are Regulated by a Unique Cross-Talk Mechanism. PLoS. 2013; 8: e65393. doi: 10.1371/journal.pone.0065393
[41]  Munro CA, Winter K, Buchan A, Henry K, Becker JM, et al. Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol. 2001; 39: 1414–1426. pmid:11251855 doi: 10.1046/j.1365-2958.2001.02347.x
[42]  Banks IR, Specht CA, Donlin MJ, Gerik KJ, Levitz SM, et al. A chitin synthase and its regulator protein are critical for Chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell. 2005; 4: 1902–1912. pmid:16278457 doi: 10.1128/ec.4.11.1902-1912.2005
[43]  Vanden Bossche H. Biochemical targets for antifungal azole derivatives hypothesis on the mode of action. Curr Top Med Mycol. 1985; 1: 313–351. pmid:3916772 doi: 10.1007/978-1-4613-9547-8_12
[44]  Villalobos-Duno H, San-Blas G, Paulinkevicius M, Sánchez-Martín Y, Nino-Vega G. Biochemical characterization of Paracoccidioides brasiliensis α-1,3-glucanase Agn1p, and its functionality by heterologous Expression in Schizosaccharomyces pombe. PLoS One.2013; 8: e66853. doi: 10.1371/journal.pone.0066853. pmid:23825576
[45]  Camacho E, Sepulveda VE, Goldman WE, San-Blas G, Ni?o-Vega GA. Expression of Paracoccidioides brasiliensis AMY1 in a Histoplasma capsulatum amy1 mutant, relates an α-(1,4)-amylase to cell wall α-(1,3)-glucan synthesis. PLoS One. 2012; 7: e50201. doi: 10.1371/journal.pone.0050201. pmid:23185578
[46]  Barreto L, Sorais F, Salazar V, San-Blas G, Ni?o-Vega GA. Expression of Paracoccidioides brasiliensis CHS3 in a Saccharomyces cerevisiae chs3 null mutant demonstrates its functionality as a chitin synthase gene. Yeast. 2010; 27: 293–300. doi: 10.1002/yea.1748. pmid:20037924
[47]  Ni?o-Vega GA, Sorais F, San-Blas G. Transcription levels of CHS5 and CHS4 genes in Paracoccidioides brasiliensis mycelial phase, respond to alterations in external osmolarity, oxidative stress and glucose concentration. Mycol Res. 2009; 113: 1091–1096. doi: 10.1016/j.mycres.2009.07.005. pmid:19616626
[48]  San-Blas G, Ni?o-Vega G. Paracoccidioides brasiliensis: chemical and molecular tools for research on cell walls, antifungals, diagnosis, taxonomy. Mycopathol. 2008; 165: 183–195. doi: 10.1007/s11046-007-9040-9
[49]  Matsuda F, Shirai T, Ishii J, Kondo A. Regulation of central carbon metabolism in Saccharomyces cerevisiae by metabolic inhibitors. J Biosci Bioeng. 2013; 16: 59–64. doi: 10.1016/j.jbiosc.2013.01.018
[50]  Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature. 2006; 440: 1013–7. pmid:16625188 doi: 10.1038/nature04716
[51]  Csermely P, Schnaider T, Sóti C, Prohászka Z, Narda G. The 90-kDa Molecular Chaperone Family: Structure, Function, and Clinical Applications. A Comprehensive Rev Pharm Ther. 1998; 79: 129–168. doi: 10.1016/s0163-7258(98)00013-8
[52]  Thomas JG, Baneyx F. Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG In vivo. J Bacteriol. 1998; 180: 5165–72. pmid:9748451
[53]  Ki SW, Kasahara K, Kwon HJ, Ishigami K, Kitahara T, et al. Radicicol binding to Swo1/Hsp90 and inhibition of growth of specific temperature-sensitive cell cycle mutants of fission yeast. Biosci Biotechnol Biochem. 2001; 65: 2528–2534. pmid:11791728 doi: 10.1271/bbb.65.2528
[54]  Sreedhar AS, Mihály K, Pató B, Schnaider T, Steták A, et al. Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events. J Biol Chem. 2003; 278: 35231–35240. pmid:12842893 doi: 10.1074/jbc.m301371200
[55]  Nicola AM, Andrade RV, Dantas AS, Andrade P, Arraes FBM, et al. The stress responsive and morphologically regulated hsp90 gene from Paracoccidioides brasiliensis is essential to cell viability. BMC Microbiol. 2008; 8: 158. doi: 10.1186/1471-2180-8-158. pmid:18808717
[56]  Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15: 1583–1606. doi: 10.1089/ars.2011.3999. pmid:21473702
[57]  Campos EG, Jesuino RSA, Dantas ADS, Brígido MDM, Felipe MSS. Oxidative stress response in Paracoccidioides brasiliensis. Genet and mol res. 2005;4: 409–429.
[58]  Giles SS, Batinic I, Perfect JR, Cox GM. Cryptococcus neoformans Mitochondrial Superoxide Dismutase?: an Essential Link between Antioxidant Function and High-Temperature Growth. Eukaryot Cell. 2005; 4: 46–54. pmid:15643059 doi: 10.1128/ec.4.1.46-54.2005
[59]  Morano K, Grant CM, Moye-Rowley WS. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genet. 2012; 190: 1157–95. doi: 10.1534/genetics.111.128033
[60]  Kwon M, Chong S, Han S, Kim K. Oxidative stresses elevate the expression of cytochrome c peroxidase in Saccharomyces cerevisiae. Biochim Biophys Acta. 2003; 1623: 1–5. pmid:12957710 doi: 10.1016/s0304-4165(03)00151-x
[61]  Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR. Relation between mitochondrial membrane potential and ROS formation. Meth Mol Biol. 2012; 810:183–205. doi: 10.1007/978-1-61779-382-0_12
[62]  Jezek P, Hlavatá L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organismo. J Biochem Cell Biol. 2005; 37: 2478–503. doi: 10.1016/j.biocel.2005.05.013
[63]  Zhu Y, Yang C, Magee DM, Cox RA. Coccidioides immitis antigen 2: analysis of gene and protein. Gen.1996; 181: 121–125. doi: 10.1016/s0378-1119(96)00486-6
[64]  Moukadiri I, Armero J, Abad A, Sentandreu R, Zueco J. Identification of a mannoprotein present in the inner layer of the cell wall of Saccharomyces cerevisiae. J Bacteriol. 1997; 179: 2154–62. pmid:9079899
[65]  Braun BR, Head WS, Wang MX, Johnson AD. Identification and characterization of TUP1-regulated genes in Candida albicans. Genet. 2000; 156: 31–44.
[66]  Johannesson H, Vidal P, Guarro J, Herr RA, Cole GT, et al. Positive directional selection in the proline-rich antigen (PRA) gene among the human pathogenic fungi Coccidioides immitis, C. posadasii and their closest relatives. Mol Biol Evol. 2004; 21: 1134–45. pmid:15034131 doi: 10.1093/molbev/msh124
[67]  Castro NDS, Maia ZA, Pereira M, Soares CMA. Screening for glycosylphosphatidylinositol-anchored proteins in the Paracoccidioides brasiliensis transcriptome. Genet Mol Res. 2005; 4: 326–45. pmid:16110449
[68]  Gautam P, Shankar J, Madan T, Sirdeshmukh R, Sundaram CS. Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B. Antimicrob Agents Chemother. 2008; 52: 4220–4227. doi: 10.1128/AAC.01431-07. pmid:18838595
[69]  Yu L, Zhang W, Wang L, Yang J, Liu T, et al. Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother. 2007; 51: 144–153. pmid:17060531 doi: 10.1128/aac.00755-06
[70]  Galal AM, Ross SA, Jacob M, ElSohly MA. Antifungal activity of artemisinin derivates. J Nat Prod. 2005; 68: 1274–1276. pmid:16124777 doi: 10.1021/np050074u
[71]  Damveld RA, Arentshorst M, Franken A, van Kuyk PA, Klis FM, et al. The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress. Mol Microbiol. 2005; 58: 305–319. pmid:16164567 doi: 10.1111/j.1365-2958.2005.04827.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133