The dynamics of regulatory T cells in the course of Trypanosoma cruzi infection is still debated. We previously demonstrated that acute murine T. cruzi infection results in an impaired peripheral CD4+Foxp3+ T cell differentiation due to the acquisition of an abnormal Th1-like phenotype and altered functional features, negatively impacting on the course of infection. Moreover, T. cruzi infection induces an intense thymic atrophy. As known, the thymus is the primary lymphoid organ in which thymic-derived regulatory T cells, known as tTregs, differentiate. Considering the lack of available data about the effect of T. cruzi infection upon tTregs, we examined tTreg dynamics during the course of disease. We confirmed that T. cruzi infection induces a marked loss of tTreg cell number associated to cell precursor exhaustion, partially avoided by glucocorticoid ablation- and IL-2 survival factor depletion. At the same time, tTregs accumulate within the CD4 single-positive compartment, exhibiting an increased Ki-67/Annexin V ratio compared to controls. Moreover, tTregs enhance after the infection the expression of signature markers (CD25, CD62L and GITR) and they also display alterations in the expression of migration-associated molecules (α chains of VLAs and chemokine receptors) such as functional fibronectin-driven migratory disturbance. Taken together, we provide data demonstrating profound alterations in tTreg compartment during acute murine T. cruzi infection, denoting that their homeostasis is significantly affected. The evident loss of tTreg cell number may compromise the composition of tTreg peripheral pool, and such sustained alteration over time may be partially related to the immune dysregulation observed in the chronic phase of the disease.
References
[1]
Sakaguchi S, Miyara M, Costantino CM, Hafler D a. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10: 490–500. doi: 10.1038/nri2785. pmid:20559327
[2]
Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol. 2009;9: 480–490. doi: 10.1038/nri2580. pmid:19543225
[3]
Pandiyan P, Lenardo MJ. The control of CD4+CD25+Foxp3+ regulatory T cell survival. Biol Direct. 2008;3: 6. doi: 10.1186/1745-6150-3-6. pmid:18304352
[4]
Vang KB, Yang J, Mahmud S a, Burchill M a, Vegoe AL, Farrar M a. IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J Immunol. 2008;181: 3285–3290. pmid:18714000 doi: 10.4049/jimmunol.181.5.3285
[5]
Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol. 2007;7: 875–888. pmid:17948021 doi: 10.1038/nri2189
[6]
Flores-García Y, Rosales-Encina JL, Rosales-García VH, Satoskar a R, Talamás-Rohana P. CD4+ CD25+ FOXP3+ Treg cells induced by rSSP4 derived from T. cruzi amastigotes increase parasitemia in an experimental Chagas disease model. Biomed Res Int. 2013;2013: 632436. doi: 10.1155/2013/632436. pmid:23509755
[7]
Guedes PMM, Gutierrez FRS, Silva GK, Dellalibera-Joviliano R, Rodrigues GJ, Bendhack LM, et al. Deficient regulatory T cell activity and low frequency of IL-17-producing T cells correlate with the extent of cardiomyopathy in human Chagas’ disease. PLoS Negl Trop Dis. 2012;6: 1–10. doi: 10.1371/journal.pntd.0001630.
[8]
De Araujo FF, Vitelli-Avelar DM, Teixeira-Carvalho A, Renato Zuquim Antas P, Assis Silva Gomes J, Sathler-Avelar R, et al. Regulatory T cells phenotype in different clinical forms of chagas’ disease. PLoS Negl Trop Dis. 2011;5: e992. [pii] pmid:21655351 doi: 10.1371/journal.pntd.0000992
[9]
Kotner J, Tarleton R. Endogenous CD4+ CD25+ regulatory T cells have a limited role in the control of Trypanosoma cruzi infection in mice. Infect Immun. 2007;75: 861–869. pmid:17101658 doi: 10.1128/iai.01500-06
[10]
Mariano FS, Gutierrez FRS, Pavanelli WR, Milanezi CM, Cavassani K a, Moreira AP, et al. The involvement of CD4+CD25+ T cells in the acute phase of Trypanosoma cruzi infection. Microbes Infect. 2008;10: 825–33. doi: 10.1016/j.micinf.2008.04.009. pmid:18538611
[11]
Sales P a, Golgher D, Oliveira R V, Vieira V, Arantes RME, Lannes-Vieira J, et al. The regulatory CD4+CD25+ T cells have a limited role on pathogenesis of infection with Trypanosoma cruzi. Microbes Infect. 2008;10: 680–8. doi: 10.1016/j.micinf.2008.03.008. pmid:18485782
[12]
González FB, Villar SR, Fernández R, Martin GH, Pérol L, Manarin R, et al. Immunoendocrine dysbalance during uncontrolled T. cruzi infection is associated with the acquisition of a Th-1-like phenotype. Brain, Behav, Immun. 2015;45: 219–32. doi: 10.1016/j.bbi.2014.11.016.
[13]
Roggero E, Perez a, Tamae-Kakazu M, Piazzon I, Nepomnaschy I, Wietzerbin J, et al. Differential susceptibility to acute Trypanosoma cruzi infection in BALB/c and C57BL/6 mice is not associated with a distinct parasite load but cytokine abnormalities. Clin Exp Immunol. 2002;128: 421–8. 1874 [pii] pmid:12067296 doi: 10.1046/j.1365-2249.2002.01874.x
[14]
Savino W, Leite-de-Moraes MC, Hontebeyrie-Joskowicz M, Dardenne M. Studies on the thymus in Chagas’ disease. I. Changes in the thymic microenvironment in mice acutely infected with Trypanosoma cruzi. Eur J Immunol. 1989;19: 1727–1733. pmid:2507328 doi: 10.1002/eji.1830190930
[15]
Roggero E, Pérez AR, Tamae-Kakazu M, Piazzon I, Nepomnaschy I, Basedovsky HO, et al. Edogenous glucocorticoids cause thymus atrophy but are protective during acute Trypanosoma cruzi infection. J Endocrinol. 2006;190: 495–503. doi: 10.1677/joe.1.06642
[16]
Savino W, Villa-Verde DMS, Mendes-da-Cruz DA, Silva-Monteiro E, Perez AR, Aoki M del P, et al. Cytokines and cell adhesion receptors in the regulation of immunity to Trypanosoma cruzi. Cytokine & Growth Factor Reviews. 2007. pp. 107–124. doi: 10.1016/j.cytogfr.2007.01.010.
[17]
Pérez AR, Berbert LR, Lepletier A, Revelli S, Bottasso O, Silva-Barbosa SD, et al. TNF-α is involved in the abnormal thymocyte migration during experimental trypanosoma cruzi infection and favors the export of immature cells. PLoS One. 2012;7. doi: 10.1371/journal.pone.0034360.
[18]
Cotta-de-Almeida V, Bonomo A, Mendes-da-Cruz DA, Riederer I, de Meis J, Ferreira Lima-Quaresma KR, et al. Trypanosoma cruzi infection modulates intrathymic contents of extracellular matrix ligands and receptors and alters thymocyte migration. Eur J Immunol. 2003;33: 2439–2448. doi: 10.1002/eji.200323860. pmid:12938220
[19]
Savino W. Molecular mechanisms governing thymocyte migration: combined role of chemokines and extracellular matrix. J Leukoc Biol. 2004;75: 951–961. pmid:15020651 doi: 10.1189/jlb.1003455
[20]
Zingales B, Andrade SG, Briones MRS, Campbell D a., Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104: 1051–1054. doi: 10.1590/S0074-02762009000700021. pmid:20027478
[21]
Pérez AR, Roggero E, Nicora A, Palazzi J, Besedovsky HO, del Rey A, et al. Thymus atrophy during Trypanosoma cruzi infection is caused by an immuno-endocrine imbalance. Brain Behav Immun. 2007;21: 890–900. doi: 10.1016/j.bbi.2007.02.004. pmid:17412557
[22]
Nardy AFFR, Luiz da Silva Filho J, Pérez AR, De Meis J, Farias-de-Oliveira DA, Penha L, et al. Trans-sialidase from Trypanosoma cruzi enhances the adhesion properties and fibronectin-driven migration of thymocytes. Microbes Infect. 2013;15: 365–374. doi: 10.1016/j.micinf.2013.02.003. pmid:23481510
[23]
Gutierrez FRS, Pavanelli WR, Medina TS, Silva GK, Mariano FS, Guedes PMM, et al. Haeme oxygenase activity protects the host against excessive cardiac inflammation during experimental Trypanosoma cruzi infection. Microbes Infect. 2014;16: 28–39. doi: 10.1016/j.micinf.2013.10.007. pmid:24140555
[24]
Savino W, Leite-de-Moraes MC, Hontebeyrie-Joskowicz M, Dardenne M. Studies on the thymus in Chagas’ disease. I. Changes in the thymic microenvironment in mice acutely infected with Trypanosoma cruzi. Eur J Immunol. 1989;19: 1727–1733. pmid:2507328 doi: 10.1002/eji.1830190930
[25]
Pérez AR, Roggero E, Nicora A, Palazzi J, Besedovsky HO, del Rey A, et al. Thymus atrophy during Trypanosoma cruzi infection is caused by an immuno-endocrine imbalance. Brain Behav Immun. 2007;21: 890–900. doi: 10.1016/j.bbi.2007.02.004. pmid:17412557
[26]
Savino W. The thymus is a common target organ in infectious diseases. PLoS Pathogens. 2006. pp. 0472–0483. doi: 10.1371/journal.ppat.0020062.
[27]
Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP, Koni P a, et al. Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci U S A. 2008;105: 11903–11908. doi: 10.1073/pnas.0801506105. pmid:18695219
[28]
Roggero E, Pérez AR, Tamae-Kakazu M, Piazzon I, Nepomnaschy I, Besedovsky HO, et al. Endogenous glucocorticoids cause thymus atrophy but are protective during acute Trypanosoma cruzi infection. J Endocrinol. 2006;190: 495–503. doi: 10.1677/joe.1.06642. pmid:16899582
[29]
Sanoja C, Carbajosa S, Fresno M, Gironès N. Analysis of the dynamics of infiltrating CD4(+) T cell subsets in the heart during experimental Trypanosoma cruzi infection. PLoS One. 2013;8: e65820. doi: 10.1371/journal.pone.0065820. pmid:23776551
[30]
Nazzal D, Gradolatto a, Truffault F, Bismuth J, Berrih-Aknin S. Human thymus medullary epithelial cells promote regulatory T-cell generation by stimulating interleukin-2 production via ICOS ligand. Cell Death Dis. 2014;5: e1420. doi: 10.1038/cddis.2014.377. pmid:25210803
[31]
Goldstein JD, Balderas RS, Marodon G. Continuous activation of the CD122/STAT-5 signaling pathway during selection of antigen-specific regulatory T cells in the murine thymus. PLoS One. 2011;6: e19038. doi: 10.1371/journal.pone.0019038. pmid:21541329
[32]
Bayer AL, Yu A, Adeegbe D, Malek TR. Essential role for interleukin-2 for CD4(+)CD25(+) T regulatory cell development during the neonatal period. J Exp Med. 2005;201: 769–77. pmid:15753210 doi: 10.1084/jem.20041179
[33]
Burchill M a, Yang J, Vogtenhuber C, Blazar BR, Farrar M a. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol. 2007;178: 280–290. 178/1/280 [pii] pmid:17182565 doi: 10.4049/jimmunol.178.1.280
Oldenhove G, Bouladoux N, Wohlfert E a., Hall J a., Chou D, Dos santos L, et al. Decrease of Foxp3+ Treg Cell Number and Acquisition of Effector Cell Phenotype during Lethal Infection. Immunity. 2009;31: 772–786. doi: 10.1016/j.immuni.2009.10.001. pmid:19896394
[36]
Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self‐tolerance and autoimmune disease. Immunol Rev. 2006;212: 8–27. pmid:16903903 doi: 10.1111/j.0105-2896.2006.00427.x
[37]
Fontenot JD, Rasmussen JP, Gavin M a, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005;6: 1142–1151. pmid:16227984 doi: 10.1038/ni1263
[38]
Sakaguchi S, Vignali D a a, Rudensky AY, Niec RE, Waldmann H. The plasticity and stability of regulatory T cells. Nat Rev Immunol. 2013;13: 461–7. doi: 10.1038/nri3464. pmid:23681097
[39]
Goldstein JD, Pérol L, Zaragoza B, Baeyens A, Marodon G, Piaggio E. Role of cytokines in thymus- versus peripherally derived-regulatory T cell differentiation and function. Front Immunol. 2013;4: 1–10. doi: 10.3389/fimmu.2013.00155
[40]
Tai X, Erman B, Alag A, Mu J, Kimura M, Katz G, et al. Foxp3 Transcription Factor Is Proapoptotic and Lethal to Developing Regulatory T Cells unless Counterbalanced by Cytokine Survival Signals. Immunity. 2013;38: 1116–1128. doi: 10.1016/j.immuni.2013.02.022. pmid:23746651
[41]
Létourneau S, Krieg C, Pantaleo G, Boyman O. IL-2- and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol. 2009;123: 758–762. doi: 10.1016/j.jaci.2009.02.011. pmid:19348914
[42]
Maggi E, Cosmi L, Liotta F, Romagnani P, Romagnani S, Annunziato F. Thymic regulatory T cells. Autoimmun Rev. 2005;4: 579–586. doi: 10.1016/j.autrev.2005.04.010. pmid:16214099
[43]
Nielsen J, Holm TL, Claesson MH. CD4+CD25+ regulatory T cells: II. Origin, disease models and clinical aspects. APMIS. 2004;112: 642–50. pmid:15601315 doi: 10.1111/j.1600-0463.2004.apm1121002.x
[44]
Morrot A, Terra-Granado E, Pérez AR, Silva-Barbosa SD, Mili?evi? NM, Farias-de-Oliveira DA, et al. Chagasic thymic atrophy does not affect negative selection but results in the export of activated CD4+CD8+ T cells in severe forms of human disease. PLoS Negl Trop Dis. 2011;5: e1268. doi: 10.1371/journal.pntd.0001268. pmid:21858238
Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22: 531–562. pmid:15032588
[47]
Klein L, Hinterberger M, Wirnsberger G, Kyewski B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol. 2009;9: 833–844. doi: 10.1038/nri2669. pmid:19935803
[48]
Wei S, Kryczek I, Zou W. Regulatory T-cell compartmentalization and trafficking. Blood. 2006;108: 426–431. doi: 10.1182/blood-2006-01-0177. pmid:16537800
[49]
Smigiel KS, Richards E, Srivastava S, Thomas KR, Dudda JC, Klonowski KD, et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J Exp Med. 2014;211: 121–36. doi: 10.1084/jem.20131142. pmid:24378538
[50]
Chissumba RM, Silva-Barbosa SD, Augusto ?, Maueia C, Mabunda N, Gudo ES Jr, et al. CD4+CD25High Treg cells in HIV/HTLV Co-infected patients with neuropathy: high expression of Alpha4 integrin and lower expression of Foxp3 transcription factor. BMC Immunol. BMC Immunology; 2015;16: 1–9. doi: 10.1186/s12865-015-0116-x
[51]
Elgbratt K, Bjursten M, Willén R, Bland PW, H?rnquist EH. Aberrant T-cell ontogeny and defective thymocyte and colonic T-cell chemotactic migration in colitis-prone Galphai2-deficient mice. Immunology. 2007;122: 199–209. pmid:17490434 doi: 10.1111/j.1365-2567.2007.02629.x
[52]
Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Perals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16: 628–634. doi: 10.1038/ni.3150. pmid:25939024
[53]
Sprent J, Surh CD. Re-entry of mature T cells to the thymus: an epiphenomenon? Immunol Cell Biol. 2009;87: 46–9. doi: 10.1038/icb.2008.88. pmid:19048017