Chagas disease (CD) is caused by Trypanosoma cruzi, whose sugar moieties are recognized by mannan binding lectin (MBL), a soluble pattern-recognition molecule that activates the lectin pathway of complement. MBL levels and protein activity are affected by polymorphisms in the MBL2 gene. We sequenced the MBL2 promoter and exon 1 in 196 chronic CD patients and 202 controls. The MBL2*C allele, which causes MBL deficiency, was associated with protection against CD (P = 0.007, OR = 0.32). Compared with controls, genotypes with this allele were completely absent in patients with the cardiac form of the disease (P = 0.003). Furthermore, cardiac patients with genotypes causing MBL deficiency presented less heart damage (P = 0.003, OR = 0.23), compared with cardiac patients having the XA haplotype causing low MBL levels, but fully capable of activating complement (P = 0.005, OR = 7.07). Among the patients, those with alleles causing MBL deficiency presented lower levels of cytokines and chemokines possibly implicated in symptom development (IL9, p = 0.013; PDGFB, p = 0.036 and RANTES, p = 0.031). These findings suggest a protective effect of genetically determined MBL deficiency against the development and progression of chronic CD cardiomyopathy.
References
[1]
Maguire JH (2006) Chagas' disease—can we stop the deaths? N Engl J Med 355: 760–761. pmid:16928993 doi: 10.1056/nejmp068130
[2]
Junqueira Junior LF (2006) Echoes from the 22nd annual applied research meeting on chagas disease and the 10th annual applied research meeting on leishmaniasis. Rev Soc Bras Med Trop 39: 565–566. pmid:17308704
[3]
Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault SK, Periago MR (2008) The neglected tropical diseases of latin america and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis 2: e300. doi: 10.1371/journal.pntd.0000300. pmid:18820747
[4]
Moncayo A (2003) Chagas disease: current epidemiological trends after the interruption of vectorial and transfusional transmission in the Southern Cone countries. Mem Inst Oswaldo Cruz 98: 577–591. pmid:12973523 doi: 10.1590/s0074-02762003000500001
[5]
Levinson W, Jawetz E (2006) Microbiologia médica e imunologia. Senna JPM, translator. Porto Alegre: Artmed. 632 p.
[6]
Ribeiro AL, Rocha MO (1998) Indeterminate form of Chagas disease: considerations about diagnosis and prognosis. Rev Soc Bras Med Trop 31: 301–314. pmid:9612022
[7]
Rossi MA, Mengel JO (1992) The pathogenesis of chronic Chagas' myocarditis: the role of autoimmune and microvascular factors. Rev Inst Med Trop Sao Paulo 34: 593–599. pmid:1342130
[8]
Yasuda MAS (2000) XVI Annual meeting of Applied Research in Chagas Disease and IV meeting of Applied Research in Leishmaniasis. Uberaba, 27–29 October 2000. Abstracts. S?o Paulo. 27–119 p.
[9]
Budzko DB, Pizzimenti MC, Kierszenbaum F (1975) Effects of complement depletion in experimental chagas disease: immune lysis of virulent blood forms of Trypanosoma cruzi. Infect Immun 11: 86–91. pmid:46840
[10]
Kipnis TL, Sucupira M, da Silva WD (1987) Transformation of Trypanosoma cruzi trypomastigote bloodstream forms by immune IgM and its Fab mu fragment into activators of the alternative complement pathway. Braz J Med Biol Res 20: 105–114. pmid:3318974
[11]
Aiello VD, Reis MM, Benvenuti LA, Higuchi Mde L, Ramires JA, et al. (2002) A possible role for complement in the pathogenesis of chronic chagasic cardiomyopathy. J Pathol 197: 224–229. pmid:12015747 doi: 10.1002/path.1095
[12]
Messias-Reason IJ, Urbanetz L, Pereira da Cunha C (2003) Complement C3 F and BF S allotypes are risk factors for Chagas disease cardiomyopathy. Tissue Antigens 62: 308–312. pmid:12974797 doi: 10.1034/j.1399-0039.2003.00101.x
[13]
Henriksen ML, Brandt J, Iyer SS, Thielens NM, Hansen S (2013) Characterization of the interaction between collectin 11 (CL-11, CL-K1) and nucleic acids. Mol Immunol 56: 757–767. doi: 10.1016/j.molimm.2013.07.011. pmid:23954398
[14]
Beltrame MH, Boldt AB, Catarino SJ, Mendes HC, Boschmann SE, et al. (2015) MBL-associated serine proteases (MASPs) and infectious diseases. Mol Immunol 67: 85–100. doi: 10.1016/j.molimm.2015.03.245. pmid:25862418
[15]
Cestari IS, Krarup A, Sim RB, Inal JM, Ramirez MI (2009) Role of early lectin pathway activation in the complement-mediated killing of Trypanosoma cruzi. Mol Immunol 47: 426–437. doi: 10.1016/j.molimm.2009.08.030. pmid:19783051
[16]
Rothfuchs AG, Roffe E, Gibson A, Cheever AW, Ezekowitz RA, et al. (2012) Mannose-binding lectin regulates host resistance and pathology during experimental infection with Trypanosoma cruzi. PLoS One 7: e47835. doi: 10.1371/journal.pone.0047835. pmid:23139754
[17]
Luz PR, Boldt AB, Grisbach C, Kun JF, Velavan TP, et al. (2013) Association of L-ficolin levels and FCN2 genotypes with chronic Chagas disease. PLoS One 8: e60237. doi: 10.1371/journal.pone.0060237. pmid:23593180
[18]
Boldt AB, Luz PR, Messias-Reason IJ (2011) MASP2 haplotypes are associated with high risk of cardiomyopathy in chronic Chagas disease. Clin Immunol 140: 63–70. doi: 10.1016/j.clim.2011.03.008. pmid:21489885
[19]
Jordan JE, Montalto MC, Stahl GL (2001) Inhibition of mannose-binding lectin reduces postischemic myocardial reperfusion injury. Circulation 104: 1413–1418. pmid:11560858 doi: 10.1161/hc3601.095578
[20]
Santos IK, Costa CH, Krieger H, Feitosa MF, Zurakowski D, et al. (2001) Mannan-binding lectin enhances susceptibility to visceral leishmaniasis. Infect Immun 69: 5212–5215. pmid:11447210 doi: 10.1128/iai.69.8.5212-5215.2001
[21]
Schafranski MD, Stier A, Nisihara R, Messias-Reason IJ (2004) Significantly increased levels of mannose-binding lectin (MBL) in rheumatic heart disease: a beneficial role for MBL deficiency. Clin Exp Immunol 138: 521–525. pmid:15544631 doi: 10.1111/j.1365-2249.2004.02645.x
[22]
Messias-Reason IJ, Boldt AB, Moraes Braga AC, Von Rosen Seeling Stahlke E, Dornelles L, et al. (2007) The association between mannan-binding lectin gene polymorphism and clinical leprosy: new insight into an old paradigm. J Infect Dis 196: 1379–1385. pmid:17922403 doi: 10.1086/521627
[23]
Busche MN, Walsh MC, McMullen ME, Guikema BJ, Stahl GL (2008) Mannose-binding lectin plays a critical role in myocardial ischaemia and reperfusion injury in a mouse model of diabetes. Diabetologia 51: 1544–1551. doi: 10.1007/s00125-008-1044-6. pmid:18493734
[24]
Schafranski MD, Pereira Ferrari L, Scherner D, Torres R, Jensenius JC, et al. (2008) High-producing MBL2 genotypes increase the risk of acute and chronic carditis in patients with history of rheumatic fever. Mol Immunol 45: 3827–3831. doi: 10.1016/j.molimm.2008.05.013. pmid:18602696
[25]
Super M, Gillies SD, Foley S, Sastry K, Schweinle JE, et al. (1992) Distinct and overlapping functions of allelic forms of human mannose binding protein. Nat Genet 2: 50–55. pmid:1303250 doi: 10.1038/ng0992-50
[26]
Holmskov U, Thiel S, Jensenius JC (2003) Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol 21: 547–578. pmid:12524383 doi: 10.1146/annurev.immunol.21.120601.140954
[27]
Turner MW (2003) The role of mannose-binding lectin in health and disease. Mol Immunol 40: 423–429. pmid:14568388 doi: 10.1016/s0161-5890(03)00155-x
[28]
Boldt AB, Petzl-Erler ML (2002) A new strategy for mannose-binding lectin gene haplotyping. Hum Mutat 19: 296–306. pmid:11857747 doi: 10.1002/humu.10051
[29]
Luz PR, Miyazaki MI, Neto NC, Nisihara RM, Messias-Reason IJ (2010) High levels of mannose-binding lectin are associated with the risk of severe cardiomyopathy in chronic Chagas Disease. Int J Cardiol 143: 448–450. doi: 10.1016/j.ijcard.2009.09.467. pmid:19853314
[30]
Bouwman LH, Roep BO, Roos A (2006) Mannose-binding lectin: clinical implications for infection, transplantation, and autoimmunity. Hum Immunol 67: 247–256. pmid:16720204 doi: 10.1016/j.humimm.2006.02.030
[31]
Boldt AB, Culpi L, Tsuneto LT, de Souza IR, Kun JF, et al. (2006) Diversity of the MBL2 gene in various Brazilian populations and the case of selection at the mannose-binding lectin locus. Hum Immunol 67: 722–734. pmid:17002903 doi: 10.1016/j.humimm.2006.05.009
[32]
(2005) [Brazilian Consensus on Chagas disease]. Rev Soc Bras Med Trop 38 Suppl 3: 7–29. pmid:16416933
[33]
Luz PR, Velavan TP, Kremsner PG, Messias-Reason IJ (2013) Association of IP-10 and PDGF-BB levels with clinical forms of chronic Chagas disease. Int J Cardiol 169: e53–55. doi: 10.1016/j.ijcard.2013.08.110. pmid:24182907
[34]
Minchinton RM, Dean MM, Clark TR, Heatley S, Mullighan CG (2002) Analysis of the relationship between mannose-binding lectin (MBL) genotype, MBL levels and function in an Australian blood donor population. Scand J Immunol 56: 630–641. pmid:12472676 doi: 10.1046/j.1365-3083.2002.01167.x
[35]
Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361–372. pmid:1637966 doi: 10.2307/2532296
[36]
Jack DL, Read RC, Tenner AJ, Frosch M, Turner MW, et al. (2001) Mannose-binding lectin regulates the inflammatory response of human professional phagocytes to Neisseria meningitidis serogroup B. J Infect Dis 184: 1152–1162. pmid:11598838 doi: 10.1086/323803
[37]
Cestari I, Ramirez MI (2010) Inefficient complement system clearance of Trypanosoma cruzi metacyclic trypomastigotes enables resistant strains to invade eukaryotic cells. PLoS One 5: e9721. doi: 10.1371/journal.pone.0009721. pmid:20300530
[38]
Kahn SJ, Wleklinski M, Aruffo A, Farr A, Coder D, et al. (1995) Trypanosoma cruzi amastigote adhesion to macrophages is facilitated by the mannose receptor. J Exp Med 182: 1243–1258. pmid:7595195 doi: 10.1084/jem.182.5.1243
[39]
Kahn SJ, Wleklinski M, Ezekowitz RA, Coder D, Aruffo A, et al. (1996) The major surface glycoprotein of Trypanosoma cruzi amastigotes are ligands of the human serum mannose-binding protein. Infect Immun 64: 2649–2656. pmid:8698491
[40]
Meirelles MN, Pereira MC, Singer RH, Soeiro MN, Garzoni LR, et al. (1999) Trypanosoma cruzi-cardiomyocytes: new contributions regarding a better understanding of this interaction. Mem Inst Oswaldo Cruz 94 Suppl 1: 149–152. pmid:10677703 doi: 10.1590/s0074-02761999000700017
[41]
Soeiro Mde N, Paiva MM, Barbosa HS, Meirelles Mde N, Araujo-Jorge TC (1999) A cardiomyocyte mannose receptor system is involved in Trypanosoma cruzi invasion and is down-modulated after infection. Cell Struct Funct 24: 139–149. pmid:10462176 doi: 10.1247/csf.24.139
[42]
Hansen TK, Thiel S, Dall R, Rosenfalck AM, Trainer P, et al. (2001) GH strongly affects serum concentrations of mannan-binding lectin: evidence for a new IGF-I independent immunomodulatory effect of GH. J Clin Endocrinol Metab 86: 5383–5388. pmid:11701711 doi: 10.1210/jcem.86.11.8009
Thiel S, Holmskov U, Hviid L, Laursen SB, Jensenius JC (1992) The concentration of the C-type lectin, mannan-binding protein, in human plasma increases during an acute phase response. Clin Exp Immunol 90: 31–35. pmid:1395098 doi: 10.1111/j.1365-2249.1992.tb05827.x
[45]
Rodriguez E, Nan R, Li K, Gor J, Perkins SJ (2015) A revised mechanism for the activation of complement C3 to C3b: a molecular explanation of a disease-associated polymorphism. J Biol Chem 290: 2334–2350. doi: 10.1074/jbc.M114.605691. pmid:25488663
[46]
Boldt AB, Messias-Reason IJ, Lell B, Issifou S, Pedroso ML, et al. (2009) Haplotype specific-sequencing reveals MBL2 association with asymptomatic Plasmodium falciparum infection. Malar J 8: 97. doi: 10.1186/1475-2875-8-97. pmid:19432958
[47]
Weitzel T, Zulantay I, Danquah I, Hamann L, Schumann RR, et al. (2012) Mannose-binding lectin and Toll-like receptor polymorphisms and Chagas disease in Chile. Am J Trop Med Hyg 86: 229–232. doi: 10.4269/ajtmh.2012.11-0539. pmid:22302853
[48]
Verdu P, Barreiro LB, Patin E, Gessain A, Cassar O, et al. (2006) Evolutionary insights into the high worldwide prevalence of MBL2 deficiency alleles. Hum Mol Genet 15: 2650–2658. pmid:16885193 doi: 10.1093/hmg/ddl193
[49]
Boldt AB, Messias-Reason IJ, Meyer D, Schrago CG, Lang F, et al. (2010) Phylogenetic nomenclature and evolution of mannose-binding lectin (MBL2) haplotypes. BMC Genet 11: 38. doi: 10.1186/1471-2156-11-38. pmid:20465856
[50]
Madsen HO, Satz ML, Hogh B, Svejgaard A, Garred P (1998) Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J Immunol 161: 3169–3175. pmid:9743385
[51]
Pulgar-Alarcon I, Fuentes-Guajardo M, Llop E, Rothhammer F (2015) [Amerindian admixture estimation based on serological and molecular methods]. Rev Med Chil 143: 439–443. doi: 10.4067/S0034-98872015000400004. pmid:26204534
[52]
Probst CM, Bompeixe EP, Pereira NF, de ODMM, Visentainer JE, et al. (2000) HLA polymorphism and evaluation of European, African, and Amerindian contribution to the white and mulatto populations from Parana, Brazil. Hum Biol 72: 597–617. pmid:11048789
[53]
Braun-Prado K, Vieira Mion AL, Farah Pereira N, Culpi L, Petzl-Erler ML (2000) HLA class I polymorphism, as characterised by PCR-SSOP, in a Brazilian exogamic population. Tissue Antigens 56: 417–427. pmid:11144289 doi: 10.1034/j.1399-0039.2000.560504.x
[54]
Larsen F, Madsen HO, Sim RB, Koch C, Garred P (2004) Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. J Biol Chem 279: 21302–21311. pmid:14764589 doi: 10.1074/jbc.m400520200
[55]
Garred P, Larsen F, Seyfarth J, Fujita R, Madsen HO (2006) Mannose-binding lectin and its genetic variants. Genes Immun 7: 85–94. pmid:16395391 doi: 10.1038/sj.gene.6364283
[56]
Chan RK, Ibrahim SI, Takahashi K, Kwon E, McCormack M, et al. (2006) The differing roles of the classical and mannose-binding lectin complement pathways in the events following skeletal muscle ischemia-reperfusion. J Immunol 177: 8080–8085. pmid:17114482 doi: 10.4049/jimmunol.177.11.8080
[57]
Trendelenburg M, Theroux P, Stebbins A, Granger C, Armstrong P, et al. (2010) Influence of functional deficiency of complement mannose-binding lectin on outcome of patients with acute ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Eur Heart J 31: 1181–1187. doi: 10.1093/eurheartj/ehp597. pmid:20089518
[58]
Boldt AB, Goeldner I, de Messias-Reason IJ (2012) Relevance of the lectin pathway of complement in rheumatic diseases. Adv Clin Chem 56: 105–153. pmid:22397030 doi: 10.1016/b978-0-12-394317-0.00012-1
[59]
Jack DL, Turner MW (2003) Anti-microbial activities of mannose-binding lectin. Biochem Soc Trans 31: 753–757. pmid:12887297 doi: 10.1042/bst0310753
[60]
Reis MM, Higuchi Mde L, Aiello VD, Benvenuti LA (2000) [Growth factors in the myocardium of patients with chronic chagasic cardiomyopathy]. Rev Soc Bras Med Trop 33: 509–518. pmid:11175580
[61]
de Souza SM, Vieira PM, Roatt BM, Reis LE, da Silva Fonseca K, et al. (2014) Dogs infected with the blood trypomastigote form of Trypanosoma cruzi display an increase expression of cytokines and chemokines plus an intense cardiac parasitism during acute infection. Mol Immunol 58: 92–97. doi: 10.1016/j.molimm.2013.11.007. pmid:24317279
[62]
Nogueira LG, Santos RH, Ianni BM, Fiorelli AI, Mairena EC, et al. (2012) Myocardial chemokine expression and intensity of myocarditis in Chagas cardiomyopathy are controlled by polymorphisms in CXCL9 and CXCL10. PLoS Negl Trop Dis 6: e1867. doi: 10.1371/journal.pntd.0001867. pmid:23150742
[63]
Zhao H, Wakamiya N, Suzuki Y, Hamonko MT, Stahl GL (2002) Identification of human mannose binding lectin (MBL) recognition sites for novel inhibitory antibodies. Hybrid Hybridomics 21: 25–36. pmid:11991814 doi: 10.1089/15368590252917610