Trypanosoma cruzi, the etiological agent of Chagas' disease, presents nutritional requirements for several metabolites. It requires heme for the biosynthesis of several heme-proteins involved in essential metabolic pathways like mitochondrial cytochromes and respiratory complexes, as well as enzymes involved in the biosynthesis of sterols and unsaturated fatty acids. However, this parasite lacks a complete route for its synthesis. In view of these facts, T. cruzi has to incorporate heme from the environment during its life cycle. In other words, their hosts must supply the heme for heme-protein synthesis. Although the acquisition of heme is a fundamental issue for the parasite’s replication and survival, how this cofactor is imported and distributed is poorly understood. In this work, we used different fluorescent heme analogs to explore heme uptake along the different life-cycle stages of T. cruzi, showing that this parasite imports it during its replicative stages: the epimastigote in the insect vector and the intracellular amastigote in the mammalian host. Also, we identified and characterized a T. cruzi protein (TcHTE) with 55% of sequence similarity to LHR1 (protein involved in L. amazonensis heme transport), which is located in the flagellar pocket, where the transport of nutrients proceeds in trypanosomatids. We postulate TcHTE as a protein involved in improving the efficiency of the heme uptake or trafficking in T. cruzi.
References
[1]
Coura JR, Vinas PA. Chagas disease: a new worldwide challenge. Nature. England; 2010;465: S6–7. doi: 10.1038/nature09221. pmid:20571554
[2]
Rassi A, Marcondes de Rezende J. American trypanosomiasis (Chagas disease). Infect Dis Clin North Am. 2012;26: 275–91. doi: 10.1016/j.idc.2012.03.002. pmid:22632639
[3]
Canepa GE, Silber AM, Bouvier LA., Pereira CA. Biochemical characterization of a low-affinity arginine permease from the parasite Trypanosoma cruzi. FEMS Microbiol Lett. 2004;236: 79–84. doi: 10.1016/j.femsle.2004.05.021. pmid:15212794
[4]
Silber AM, Tonelli RR, Lopes CG, Cunha-e-Silva N, Torrecilhas ACT, Schumacher RI, et al. Glucose uptake in the mammalian stages of Trypanosoma cruzi. Mol Biochem Parasitol. 2009;168: 102–108. doi: 10.1016/j.molbiopara.2009.07.006. pmid:19631694
[5]
Salzman TA, Stella AM, Wider de Xifra EA, Batlle AM, Docampo R, Stoppani AO. Porphyrin biosynthesis in parasitic hemoflagellates: functional and defective enzymes in Trypanosoma cruzi. Comp Biochem Physiol B. ENGLAND; 1982;72: 663–667. pmid:6751683 doi: 10.1016/0305-0491(82)90523-5
[6]
Ko?eny L, Luke? J, Oborník M. Evolution of the haem synthetic pathway in kinetoplastid flagellates: An essential pathway that is not essential after all? Int J Parasitol. 2010;40: 149–156. doi: 10.1016/j.ijpara.2009.11.007. pmid:19968994
[7]
Tripodi KEJ, Menendez Bravo SM, Cricco JA. Role of heme and heme-proteins in trypanosomatid essential metabolic pathways. Enzyme Res. 2011;2011: 873230. doi: 10.4061/2011/873230. pmid:21603276
[8]
Anzaldi LL, Skaar EP. Overcoming the heme paradox: Heme toxicity and tolerance in bacterial pathogens. Infect Immun. 2010;78: 4977–4989. doi: 10.1128/IAI.00613-10. pmid:20679437
[9]
Wilks A, Burkhard KA. Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Nat Prod Rep. 2007;24: 511–522. doi: 10.1039/b604193k. pmid:17534527
[10]
Hamza I, Dailey HA. One ring to rule them all: Trafficking of heme and heme synthesis intermediates in the metazoans. Biochim Biophys Acta—Mol Cell Res. Elsevier B.V.; 2012;1823: 1617–1632. doi: 10.1016/j.bbamcr.2012.04.009.
[11]
Sinclair J, Hamza I. Lessons from bloodless worms: heme homeostasis in C. elegans. BioMetals. Springer Netherlands; 2015;28: 481–489. doi: 10.1007/s10534-015-9841-0. pmid:25724951
[12]
Rajagopal A, Rao AU, Amigo J, Tian M, Upadhyay SK, Hall C, et al. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature. 2008;453: 1127–1131. doi: 10.1038/nature06934. pmid:18418376
[13]
Yuan X, Protchenko O, Philpott CC, Hamza I. Topologically conserved residues direct heme transport in HRG-1-related proteins. J Biol Chem. 2012;287: 4914–4924. doi: 10.1074/jbc.M111.326785. pmid:22174408
[14]
Campos-Salinas J, Cabello-Donayre M, García-Hernández R, Pérez-Victoria I, Castanys S, Gamarro F, et al. A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania. Mol Microbiol. 2011;79: 1430–1444. doi: 10.1111/j.1365-2958.2010.07531.x. pmid:21255121
[15]
Huynh C, Yuan X, Miguel DC, Renberg RL, Protchenko O, Philpott CC, et al. Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog. 2012;8: 36. doi: 10.1371/journal.ppat.1002795.
[16]
Lara FA, Sant'Anna C, Lemos D, Laranja GAT, Coelho MGP, Reis Salles I, et al. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. Biochem Biophys Res Commun. 2007;355: 16–22. doi: 10.1016/j.bbrc.2006.12.238. pmid:17292866
[17]
Cupello MP, Souza CF De, Buchensky C, Soares JBRC, Laranja GAT, Coelho MGP, et al. The heme uptake process in Trypanosoma cruzi epimastigotes is inhibited by heme analogues and by inhibitors of ABC transporters. Acta Trop. Elsevier B.V.; 2011;120: 211–218. doi: 10.1016/j.actatropica.2011.08.011. pmid:21903090
[18]
Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. United States; 2002;350: 87–96. pmid:12073338 doi: 10.1016/s0076-6879(02)50957-5
[19]
Camargo EP. Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo. BRAZIL; 1964;6: 93–100. pmid:14177814
Rasband WS. ImageJ. U S Natl Institutes Heal Bethesda, Maryland, USA.
[22]
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. Nature Publishing Group; 2012;9: 671–675. doi: 10.1038/nmeth.2089. pmid:22930834
[23]
Berry EA, Trumpower BL. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem. 1987;161: 1–15. doi: 10.1016/0003-2697(87)90643-9. pmid:3578775
[24]
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2009;38: 457–462. doi: 10.1093/nar/gkp851.
[25]
Larkin M a., Blackshields G, Brown NP, Chenna R, Mcgettigan P a., McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23: 2947–2948. doi: 10.1093/bioinformatics/btm404. pmid:17846036
[26]
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305: 567–580. doi: 10.1006/jmbi.2000.4315. pmid:11152613
[27]
Alonso VL, Ritagliati C, Cribb P, Serra EC. Construction of three new Gateway expression plasmids for Trypanosoma cruzi. Mem Inst Oswaldo Cruz. 2014;109: 1081–1085. doi: 10.1590/0074-0276140238. pmid:25424446
[28]
Taylor MC, Kelly JM. pTcINDEX: a stable tetracycline-regulated expression vector for Trypanosoma cruzi. BMC Biotechnol. 2006;6: 32. doi: 10.1186/1472-6750-6-32. pmid:16824206
[29]
Mumberg D, Muller R, Funk M. eI 30–20. Nucleic Acids Res. 1994;22: 5767–5768. doi: 10.1093/nar/22.25.5767. pmid:7838736
[30]
Buchensky C, Almirón P, Mantilla BS, Silber AM, Cricco JA. The Trypanosoma cruzi proteins TcCox10 and TcCox15 catalyze the formation of heme A in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett. 2010;312: 133–141. doi: 10.1111/j.1574-6968.2010.02109.x. pmid:20979346
[31]
Sasse R, Gull K. Tubulin post-translational modifications and the construction of microtubular organelles in Trypanosoma brucei. J Cell Sci. 1988;90 (Pt 4): 577–589. pmid:3075618
[32]
Renberg RL, Yuan X, Samuel TK, Miguel DC, Hamza I, Andrews NW, et al. The Heme Transport Capacity of LHR1 Determines the Extent of Virulence in Leishmania amazonensis. PLoS Negl Trop Dis. 2015;9: e0003804. doi: 10.1371/journal.pntd.0003804. pmid:26001191
[33]
Crisp RJ, Pollington A, Galea C, Jaron S, Yamaguchi-Iwai Y, Kaplan J. Inhibition of Heme Biosynthesis Prevents Transcription of Iron Uptake Genes in Yeast. J Biol Chem. 2003;278: 45499–45506. doi: 10.1074/jbc.M307229200. pmid:12928433
[34]
Ko?eny L, Oborník M, Luke? J. Make It, Take It, or Leave It: Heme Metabolism of Parasites. PLoS Pathog. 2013;9. doi: 10.1371/journal.ppat.1003088.
[35]
Rao AU, Carta LK, Lesuisse E, Hamza I. Lack of heme synthesis in a free-living eukaryote. Proc Natl Acad Sci U S A. 2005;102: 4270–4275. doi: 10.1073/pnas.0500877102. pmid:15767563
[36]
Miguel DC, Flannery AR, Mittra B, Andrews NW. Heme uptake mediated by lhr1 is essential for leishmania amazonensis virulence. Infect Immun. 2013;81: 3620–3626. doi: 10.1128/IAI.00687-13. pmid:23876801
[37]
Rice AJ, Park A, Pinkett HW. Diversity in ABC transporters: Type I, II and III importers. Crit Rev Biochem Mol Biol. 2014;49: 426–437. doi: 10.3109/10409238.2014.953626. pmid:25155087
[38]
Sauvage V, Aubert D, Escotte-Binet S, Villena I. The role of ATP-binding cassette (ABC) proteins in protozoan parasites. Mol Biochem Parasitol. 2009;167: 81–94. doi: 10.1016/j.molbiopara.2009.05.005. pmid:19464325
[39]
Krishnamurthy G, Vikram R, Singh SB, Patel N, Agarwal S, Mukhopadhyay G, et al. Hemoglobin receptor in Leishmania is a hexokinase located in the flagellar pocket. J Biol Chem. 2005;280: 5884–5891. doi: 10.1074/jbc.M411845200. pmid:15579464
[40]
Silber AM, Tonelli RR, Martinelli M, Colli W, Alves MJM. Active transport of L-proline in Trypanosoma cruzi. J Eukaryot Microbiol. 2002;49: 441–446. doi: 10.1111/j.1550-7408.2002.tb00225.x. pmid:12503677
[41]
Canepa GE, Bouvier LA, Miranda MR, Uttaro AD, Pereira CA. Characterization of Trypanosoma cruzi L-cysteine transport mechanisms and their adaptive regulation. FEMS Microbiol Lett. 2009;292: 27–32. doi: 10.1111/j.1574-6968.2008.01467.x. pmid:19175408
[42]
Landfear SM, Ignatushchenko M. The flagellum and flagellar pocket of trypanosomatids. Mol Biochem Parasitol. 2001;115: 1–17. doi: 10.1016/S0166-6851(01)00262-6. pmid:11377735