Background The persistence of Mycobacterium leprae (M. leprae) infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions. Methodology/Principal Findings Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta), IL-6, tumor necrosis factor alpha (TNF-alpha) and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg) cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma) expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings. Conclusions/Significance Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.
References
[1]
Cruz D, Watson AD, Miller CS, Montoya D, Ochoa MT, Sieling P a., et al. Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. J Clin Invest. 2008;118: 2917–2928. doi: 10.1172/JCI34189. pmid:18636118
[2]
Walker SL, Lockwood DNJ. The clinical and immunological features of leprosy. Br Med Bull. 2006;77–78: 103–21. pmid:17090777 doi: 10.1093/bmb/ldl010
[3]
Ridley DS. Histological classification and the immunological spectrum of leprosy. Bull World Health Organ. 1974;51: 451–465. pmid:4549496
[4]
Joosten SA, van Meijgaarden KE, Savage NDL, de Boer T, Triebel F, van der Wal A, et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci U S A. 2007;104: 8029–34. pmid:17483450 doi: 10.1073/pnas.0702257104
[5]
Bobosha K, Wilson L, van Meijgaarden KE, Bekele Y, Zewdie M, van der Ploeg- van Schip JJ, et al. T-Cell Regulation in Lepromatous Leprosy. PLoS Negl Trop Dis. 2014;8. doi: 10.1371/journal.pntd.0002773
[6]
Palermo ML, Pagliari C, Trindade MAB, Yamashitafuji TM, Duarte AJS, Cacere CR, et al. Increased expression of regulatory T cells and down-regulatory molecules in lepromatous leprosy. Am J Trop Med Hyg. 2012;86: 878–83. doi: 10.4269/ajtmh.2012.12-0088. pmid:22556091
[7]
Modlin RL. The innate immune response in leprosy. Current Opinion in Immunology. 2010. pp. 48–54. doi: 10.1016/j.coi.2009.12.001. pmid:20060279
[8]
Dockrell HM, Young SK, Britton K, Brennan PJ, Rivoire B, Waters MFR, et al. Induction of Th1 cytokine responses by mycobacterial antigens in leprosy. Infect Immun. 1996;64: 4385–4389. pmid:8926118
[9]
Mills CD. M1 and M2 Macrophages: Oracles of Health and Disease. Crit Rev Immunol. 2012;32: 463–88.
[10]
Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158: 670–689. pmid:6411853 doi: 10.1084/jem.158.3.670
[11]
Hu X, Ivashkiv LB. Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity. 2009;31: 539–550. doi: 10.1016/j.immuni.2009.09.002. pmid:19833085
Verreck FAW, de Boer T, Langenberg DML, Hoeve MA, Kramer M, Vaisberg E, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A. 2004;101: 4560–4565. pmid:15070757 doi: 10.1073/pnas.0400983101
[14]
Montoya D, Cruz D, Teles RMB, Lee DJ, Ochoa MT, Krutzik SR, et al. Divergence of macrophage phagocytic and antimicrobial programs in leprosy. Cell Host Microbe. 2009;6: 343–53. doi: 10.1016/j.chom.2009.09.002. pmid:19837374
[15]
Mège J-L, Mehraj V, Capo C. Macrophage polarization and bacterial infections. Curr Opin Infect Dis. 2011;24: 230–234. doi: 10.1097/QCO.0b013e328344b73e. pmid:21311324
[16]
Boer MC, van Meijgaarden KE, Joosten SA, Ottenhoff THM. CD8+ regulatory T cells, and not CD4+ T cells, dominate suppressive phenotype and function after in vitro live Mycobacterium bovis-BCG activation of human cells. PLoS One. Public Library of Science; 2014;9: e94192. doi: 10.1371/journal.pone.0094192
[17]
Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest. 2005;115: 66–75. pmid:15630445 doi: 10.1172/jci200519229
[18]
Levy L, Ji B. The mouse foot-pad technique for cultivation of Mycobacterium leprae. Lepr Rev. 2006;77: 5–24. pmid:16715686 doi: 10.5935/0305-7518.19760019
[19]
McDermott-Lancaster RD, Ito T, Kohsaka K, Guelpa-Lauras CC, Grosset JH. Multiplication of Mycobacterium leprae in the nude mouse, and some applications of nude mice to experimental leprosy. Int J Lepr Other Mycobact Dis. 1987;55: 889–95.
[20]
Truman RW, Krahenbuhl JL. Viable M. leprae as a research reagent. Int J Lepr Other Mycobact Dis. 2001;69: 1–12.
[21]
Lahiri R, Randhawa B, Krahenbuhl JL. Infection of mouse macrophages with viable Mycobacterium leprae does not induce apoptosis. J Infect Dis. 2010;201: 1736–42. doi: 10.1086/652499. pmid:20402595
[22]
Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. American Society for Clinical Investigation; 2008;118: 3522–30. doi: 10.1172/JCI36150. pmid:18982158
[23]
Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22: 745–63. pmid:15032595 doi: 10.1146/annurev.immunol.22.012703.104702
[24]
Campbell DJ, Koch M a. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol. Nature Publishing Group; 2011;11: 119–130. doi: 10.1038/nri2916. pmid:21267013
[25]
Sasiain MC, de la Barrera S, Minnucci F, Valdez R, de Elizalde de Bracco MM, Bali?a LM. T-cell-mediated cytotoxicity against Mycobacterium antigen-pulsed autologous macrophages in leprosy patients. Infect Immun. 1992;60: 3389–95.
[26]
Chang J, Kunkel SL, Chang C- H. Negative regulation of MyD88-dependent signaling by IL-10 in dendritic cells. Proc Natl Acad Sci U S A. 2009;106: 18327–32. doi: 10.1073/pnas.0905815106. pmid:19815506
[27]
Grutz G. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol. 2005;77: 3–15. pmid:15522916 doi: 10.1189/jlb.0904484
[28]
Mengozzi M, Ghezzi P. Cytokine down-regulation in endotoxin tolerance. Eur Cytokine Netw. 1993;4: 89–98.